Constructing a Maximally Entangled Seven-Qubit State via Orthogonal Arrays
Xin-Wei Zha , Min-Rui Wang* , and Ruo-Xu Jiang
School of Science, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
Abstract :Huber et al. [Phys. Rev. Lett. 118 (2017) 200502 ] have proved that a seven-qubit state whose three-body marginal states are all maximally mixed does not exist. Here, we propose a method to build a maximally entangled state based on orthogonal arrays to construct maximally entangled seven-qubit states. Using this method, we not only determine that a seven-qubit state whose three-body marginals are all maximally mixed does not exist, but also find the condition for maximally entangled seven-qubit states. We consider that $\pi_{\rm ME} =19/140$ is a condition for maximally entangled seven-qubit states. Furthermore, we derive three forms of maximally entangled seven-qubit states via orthogonal arrays.
收稿日期: 2020-03-15
出版日期: 2020-09-01
:
03.67.-a
(Quantum information)
03.65.Ud
(Entanglement and quantum nonlocality)
03.67.Mn
(Entanglement measures, witnesses, and other characterizations)
[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[2] Ekert A K 1991 Phys. Rev. Lett. 67 661
[3] Benatti F, Liguori A M and Paluzzano G 2010 J. Phys. A 43 045304
[4] Facchi P, Marzolino U, Parisi G, Pascazio S and Scardicchio A 2008 Phys. Rev. Lett. 101 050502
[5] Higuchi A and Sudbery A 2000 Phys. Lett. A 273 213
[6] Gisin N and Bechmann-Pasquinucci H 1998 Phys. Lett. A 246 1
[7] Verstraete F, Audenaert K and De Moor B 2001 Phys. Rev. A 64 012316
[8] Acín A, Gill R and Gisin N 2005 Phys. Rev. Lett. 95 210402
[9] Ishizaka S and Hiroshima T 2000 Phys. Rev. A 62 022310
[10] Yu N K, Duan R Y and Ying M S 2012 Phys. Rev. Lett. 109 020506
[11] De Vicente J I, Spee C and Kraus B 2013 Phys. Rev. Lett. 111 110502
[12] Martin J, Giraud O, Braun P A et al. 2010 Phys. Rev. A 81 062347
[13] Facchi P, Florio G, Parisi G and Pascazio S 2008 Phys. Rev. A 77 060304
[14] Zha X W, Yuan C Z and Zhang Y P 2013 Laser Phys. Lett. 10 045201
[15] Goyeneche D and Życzkowski K 2014 Phys. Rev. A 90 022316
[16] Arnaud L and Cerf N J 2013 Phys. Rev. A 87 012319
[17] Gour G and Wallach N R 2010 J. Math. Phys. 51 112201
[18] Huber F, Gühne O and Siewert J 2017 Phys. Rev. Lett. 118 200502
[19] Giraud O 2007 J. Phys. A 40 F1053
[20] Zha X W, Ahmed I, Zhang D and Zhang Y P 2020 Laser Phys. Lett. 17 035201
[21] Zha X W, Song H Y, Qi J X et al. 2012 J. Phys. A 45 255302
[22] Yu X Y, Zha X W and Che J L 2018 Sci. Sin.-Phys. Mech. Astron. 48 020301 (in Chinese)
[1]
. [J]. 中国物理快报, 2023, 40(1): 10301-.
[2]
. [J]. 中国物理快报, 2022, 39(10): 100701-.
[3]
. [J]. 中国物理快报, 2022, 39(9): 90301-.
[4]
. [J]. 中国物理快报, 2022, 39(7): 70301-070301.
[5]
. [J]. 中国物理快报, 2022, 39(7): 70302-.
[6]
. [J]. 中国物理快报, 2022, 39(5): 50301-.
[7]
. [J]. 中国物理快报, 2022, 39(5): 50303-.
[8]
. [J]. 中国物理快报, 2021, 38(11): 110303-.
[9]
. [J]. 中国物理快报, 2021, 38(9): 94202-094202.
[10]
. [J]. 中国物理快报, 2021, 38(8): 80301-.
[11]
. [J]. 中国物理快报, 2021, 38(3): 30302-.
[12]
. [J]. 中国物理快报, 2020, 37(12): 120301-.
[13]
. [J]. 中国物理快报, 2020, 37(11): 110302-.
[14]
. [J]. 中国物理快报, 2020, 37(8): 80301-.
[15]
. [J]. 中国物理快报, 2020, 37(7): 70301-.