摘要We introduce a hybrid feedback control scheme to design a controller for the projective synchronization of complex dynamical networks with unknown periodically time-varying parameters. A differential-difference mixed parametric learning law and an adaptive learning control law are constructed to ensure the asymptotic convergence of the error in the sense of square error norm. Moreover, numerical simulation results are used to verify the effectiveness of the proposed method.
Abstract:We introduce a hybrid feedback control scheme to design a controller for the projective synchronization of complex dynamical networks with unknown periodically time-varying parameters. A differential-difference mixed parametric learning law and an adaptive learning control law are constructed to ensure the asymptotic convergence of the error in the sense of square error norm. Moreover, numerical simulation results are used to verify the effectiveness of the proposed method.
[1] Pecora L M and Carroll T L 1998 Phys. Rev. Lett. 80 2109
[2] Li C and Chen G 2004 Physica A 343 263
[3] Wang X F and Chen G 2002 IEEE Trans. Circuits Syst. I 49 54
[4] Wang M, Wang X and Liu Z 2010 Chin. J. Phys. 48 805
[5] Lu W L and Chen T 2006 Physica D 213 214
[6] Gao H, Lam J and Chen G 2006 Phys. Lett. A 360 263
[7] Lü J H and Chen G R 2005 IEEE Trans. Automat. Control 50 841
[8] Ahn C K 2011 Chin. Phys. Lett. 28 100504
[9] Wang Y, Zhang H, Wang X and Yang D 2010 IEEE Trans. Systems, Man, Cybernetics-Part B: Cybernetics 40 1468
[10] Xiao Y and Xu W 2007 Chin. Phys. B 16 1597
[11] Jia F, Xu W and Du L 2007 Acta Phys. Sin. 56 5640
[12] Wei D, Luo X and Qin Y 2009 Chin. Phys. B 18 2184
[13] Wang X and He Y 2008 Phys. Lett. A 372 435
[14] Cao J, Li H and Ho D 2005 Chaos, Solitons and Fractals 23 1285
[15] Yu D, Xia L and Wang D 2006 Chin. Phys. B 15 1454
[16] Gao M and Cui B 2009 Chin. Phys. B 18 76
[17] Min F and Wang Z 2007 Acta Phys. Sin. 56 6238
[18] Meng J and Wang X 2008 Mod. Phys. Lett. B 22 181
[19] Wang X, Nian F and Guo G 2009 Phys. Lett. A 373 1754
[20] Sun Y, Li J, Wang J and Wang H 2010 Chin. Phys. B 19 020505
[21] Wang M, Wang X and Niu Y 2011 Chin. Phys. B 20 010508
[22] Kadir A, Wang X and Zhao Y 2011 Chin. Phys. Lett. 28 090503
[23] Wang X and Wang Y 2011 Nonlinear Dyn. 65 311
[24] Song Y X, Yu X H, Chen G R, Xu J X and Tian Y P 2002 Int. J. Bifur. Chaos 12 1057
[25] Xu J X and Yan R 2006 IEEE Trans. Autom. Control 51 1842
[26] Li Z and Chen G 2004 Phys. Lett. A 324 166
[27] Wang L, Dai H P, Dong H, Shen Y H and Sun Y X 2008 Phys. Lett. A 372 3632
[28] Wang X and Chen G 2002 IEEE Trans. Circuits Syst. I 49 54
[29] Wang X and Chen G 2002 Int. J. Bifur. Chaos 12 187
[30] Li C and Chen G 2004 Physica A 343 263
[31] Lü J and Chen G 2005 IEEE Trans. Automat. Contr. 50 841
[32] Wu C W 2005 IEEE Trans. Circuits Syst. II 52 282