The Dependence of Chimera States on Initial Conditions
FENG Yue-E, LI Hai-Hong**
School of Science, Beijing University of Posts and Telecommunications, Beijing 100876
Abstract :A chimera state consisting of both coherent and incoherent groups is a fascinating spatial pattern in non-locally coupled identical oscillators. It is thought that random initial conditions hardly evolve to chimera states. In this work, we study the dependence of chimera states on initial conditions. We show that random initial conditions may lead to chimera states and the chance of realizing chimera states becomes increasing when the model parameters are moving away from the boundary of their stable regime.
收稿日期: 2015-01-19
出版日期: 2015-06-30
:
05.45.Xt
(Synchronization; coupled oscillators)
04.20.Ex
(Initial value problem, existence and uniqueness of solutions)
45.70.Qj
(Pattern formation)
[1] Kuramoto Y and Battogtokh D 2002 Nonlinear Phenom. Complex Syst. 5 380 [2] Tanaka D and Kuramoto Y 2003 Phys. Rev. E 68 026219 [3] Sethia G C, Sen A and Atay F M 2008 Phys. Rev. Lett. 100 144102 [4] Sheeba J H, Chandrasekar V K and Lakshmanan M 2010 Phys. Rev. E 81 046203 [5] Zhu Y, Zheng Z G and Yang J Z 2013 Europhys. Lett. 103 10007 [6] Abrams D M, Mirollo R, Strogatz S H and Wiley D A 2008 Phys. Rev. Lett. 101 084103 [7] Zakharova A, Kapeller M and Sch?ll E 2014 Phys. Rev. Lett. 112 154101 [8] Gopal R, Chandrasekar V K, Venkatesan A and Lakshmanan M 2014 Phys. Rev. E 89 052914 [9] Sethia G C and Sen A 2014 Phys. Rev. Lett. 112 144101 [10] Schmidt L and Krischer K 2015 Phys. Rev. Lett. 114 034101 [11] Abrams D M and Strogatz S H 2004 Phys. Rev. Lett. 93 174102 [12] Laing C R 2009 Physica D 238 1569 [13] Laing C R 2009 Chaos 19 013113 [14] Ott E and Antonsen T M 2008 Chaos 18 037113 [15] Shima S I and Kuramoto Y 2004 Phys. Rev. E 69 036213 [16] Gu C, St-Yves G and Davidsen J 2013 Phys. Rev. Lett. 111 134101 [17] Martens E A, Laing C R and Strogatz S H 2010 Phys. Rev. Lett. 104 044101 [18] Omelchenko I, Maistrenko Y, H?vel P and Sch?ll E 2011 Phys. Rev. Lett. 106 234102 [19] Omelchenko I, Riemenschneider B, H?vel P, Maistrenko Y and Sch?ll E 2012 Phys. Rev. E 85 026212 [20] Omel'chenko O E, Wolfrum M and Maistrenko Y L 2010 Phys. Rev. E 81 065201(R) [21] Abrams D M and Strogatz S H 2006 Int. J. Bifurcation Chaos Appl. Sci. Eng. 16 21 [22] Larger L, Penkovsky B and Maistrenko Y 2013 Phys. Rev. Lett. 111 054103 [23] Zhu Y, Zheng Z G and Yang J Z 2014 Phys. Rev. E 89 022914 [24] Nkomo S, Tinsley M R and Showalter K 2013 Phys. Rev. Lett. 110 244102
[1]
. [J]. 中国物理快报, 2020, 37(1): 14501-014501.
[2]
. [J]. 中国物理快报, 2016, 33(12): 120501-120501.
[3]
. [J]. 中国物理快报, 2016, 33(07): 70501-070501.
[4]
. [J]. 中国物理快报, 2016, 33(05): 50501-050501.
[5]
. [J]. 中国物理快报, 2016, 33(05): 50502-050502.
[6]
. [J]. 中国物理快报, 2015, 32(12): 120502-120502.
[7]
. [J]. 中国物理快报, 2015, 32(12): 128901-128901.
[8]
. [J]. 中国物理快报, 2015, 32(11): 110502-110502.
[9]
. [J]. 中国物理快报, 2015, 32(11): 110503-110503.
[10]
. [J]. 中国物理快报, 2015, 32(4): 40502-040502.
[11]
. [J]. 中国物理快报, 2015, 32(03): 30502-030502.
[12]
. [J]. 中国物理快报, 2015, 32(01): 10502-010502.
[13]
. [J]. 中国物理快报, 2015, 32(01): 10503-010503.
[14]
. [J]. 中国物理快报, 2014, 31(10): 100501-100501.
[15]
. [J]. 中国物理快报, 2014, 31(08): 80503-080503.