Micromotion Compensation and Photoionization of Ions in a Linear Trap
XIE Yi1,2, ZHOU Fei1, CHEN Liang1, WAN Wei1,2, FENG Mang1**
1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 2Graduate School of the Chinese Academy of Sciences, Beijing 100049
Micromotion Compensation and Photoionization of Ions in a Linear Trap
XIE Yi1,2, ZHOU Fei1, CHEN Liang1, WAN Wei1,2, FENG Mang1**
1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 2Graduate School of the Chinese Academy of Sciences, Beijing 100049
摘要The stable confinement of ions in an electromagnetic trap is a prerequisite of sideband cooling and quantum information processing. For a string of ions in a linear ion trap, we report our recent efforts of compensating for micromotion of the ions by three methods, which yields narrower fluorescence spectra and lower temperature. We also achieve a photoionization scheme that loads the ions deterministically into the linear trap from an atomic beam.
Abstract:The stable confinement of ions in an electromagnetic trap is a prerequisite of sideband cooling and quantum information processing. For a string of ions in a linear ion trap, we report our recent efforts of compensating for micromotion of the ions by three methods, which yields narrower fluorescence spectra and lower temperature. We also achieve a photoionization scheme that loads the ions deterministically into the linear trap from an atomic beam.
XIE Yi;ZHOU Fei;CHEN Liang;WAN Wei;FENG Mang**
. Micromotion Compensation and Photoionization of Ions in a Linear Trap[J]. 中国物理快报, 2011, 28(9): 93201-093201.
XIE Yi, ZHOU Fei, CHEN Liang, WAN Wei, FENG Mang**
. Micromotion Compensation and Photoionization of Ions in a Linear Trap. Chin. Phys. Lett., 2011, 28(9): 93201-093201.
[1] Cirac J I and Zoller P 1995 Phys. Rev. Lett. 74 4091
[2] Monz T, Schindler P, Barreiro J T, Chwalla M, Nigg D, Coish W A, Harlander M, Haensel W, Hennrich M and Blatt R 2011 Phys. Rev. Lett. 106 130506
[3] Gulde S, Riebe M, Lancaster G P T, Becher C, Eschner J, Häffner H, Schmidt-Kaler F, Chuang I L and Blatt R 2003 Nature 421 48
[4] Kim K, Chang M S, Korenblit S, Islam R, Edwards E E, Freericks J K, Lin G D, Duan L M and Monroe C 2010 Nature 465 590
[5] Gerritsma R, Kirchmair G, Zähringer F, Solano E, Blatt R, and Roos C F 2010 Nature 463 68
[6] Moehring D L, Maunz P, Olmschenk S, Younge K C, Matsukevich D N, Duan L M and Monroe C 2007 Nature 449 68
[7] Zhou F, Xie Y, Xu Y Y, Li J M, Huang X R and Feng M 2010 Chin. Phys. Lett. 27 043201
[8] Zhou F, Xie Y, Xu Y Y, Huang X R and Feng M 2010 Chin. Phys. Lett. 27 123203
[9] Berkeland D J, Miller J D, Bergquist J C, Itano W M and Wineland D J 1998 J. Appl. Phys. 83 5025
[10] Kjaergaard N, Hornekaer L, Thommesen A M, Videsen Z and Drewsen M 2000 Appl. Phys. B 71 207
[11] Gulde S, Rotter D, Barton P, Schmidt-Kaler F, Blatt R and Hogervorst W 2001 Appl. Phys. B 73 861
[12] Lucas D M, Ramos A, Home J P, McDonnell M J, Nakayama S, Stacey J P, Webster S C, Stacey D N and Steane A M 2004 Phys. Rev. A 69 012711
[13] Schuck C, Almendros M, Rohde F, Hennrich M and Eschner J 2010 Appl. Phys. B 100 765