摘要We report a calculation of binding energy of the ground state of a hydrogenic donor in a quantum cylindrical GaAs dot surrounded by Ga1−xAlxAs with finite confinement potentials, in the presence of a uniform electric field applied parallel to the dot axis. The binding energy increases inchmeal as the radius of the dot decreases until a maximum value for a certain value of the quantum dot radii, then begins to drop quickly. Results for the binding energies and electronic wave function density of the hydrogenic-donor as functions of the impurity position, dot thickness and applied electric field are also presented.
Abstract:We report a calculation of binding energy of the ground state of a hydrogenic donor in a quantum cylindrical GaAs dot surrounded by Ga1−xAlxAs with finite confinement potentials, in the presence of a uniform electric field applied parallel to the dot axis. The binding energy increases inchmeal as the radius of the dot decreases until a maximum value for a certain value of the quantum dot radii, then begins to drop quickly. Results for the binding energies and electronic wave function density of the hydrogenic-donor as functions of the impurity position, dot thickness and applied electric field are also presented.
PAN Jiang-Hong;LIU Li-Zhe;LIU Min**
. Hydrogenic-Donor Impurity States in GaAs/Al xGa 1−xAs Quantum Dots in the Presence of an Electric Field[J]. 中国物理快报, 2011, 28(8): 86201-086201.
PAN Jiang-Hong, LIU Li-Zhe, LIU Min**
. Hydrogenic-Donor Impurity States in GaAs/Al xGa 1−xAs Quantum Dots in the Presence of an Electric Field. Chin. Phys. Lett., 2011, 28(8): 86201-086201.
[1] Bastard G, Mendez E E, Chang L L and Esaki L 1983 Phys. Rev. B 28 3241
[2] Fang A, Chang Y C and Tucker J R 2002 Phys. Rev. B 66 155331
[3] Morales A L, Raigoza N, Duque C A and Oliveira L E 2008 Phys. Rev. B 77 113309
[4] Dios-Leyva M, Duque C A and Oliveira L E 2007 Phys. Rev. B 76 075303
[5] Yamaguchi M, Nomura S, Miyakoshi K, Tamura H, Akazaki T and Takayanagi H 2006 J. Appl. Phys. 100 113523
[6] Kim T W, Lee K H and Park H L 1998 Appl. Phys. Lett. 73 1550
[7] Li S S, Abliz A, Yang F H, Niu Z C and Feng S L 2003 J. Appl. Phys. 94 5402
[8] Liu L Z, Wu X L, Shen J C, Li T H, Gao F and Chu P K 2010 Chem. Commun. 46 5539
[9] Liu J J, Shen M and Wang S W 2007 J. Appl. Phys. 101 073703
[10] Porras-Montenegro N and Perez-Merchancano S T 1992 Phys. Rev. B 46 9780
[11] Porras-Montenegro N, Perez-Merchancano S T and Latge A 1993 J. Appl. Phys. 74 7624
[12] Bose C 1998 J. Appl. Phys. 83 3089
[13] Li G, Branis S V, Bajaj K K 1993 Phys. Rev. B 47 15735
[14] López S Y, Porras-Montenegro N, Tangarife E, Duque C A 2008 Physica E 40 1383
[15] Wang X F and Liu Y H 2007 J. Appl. Phys. 102 063708
[16] Imamura H and Hawrylak P 1996 Phys. Rev. B 53 12613
[17] Ruzin L M, Chandrasekhar V, Levin E I L, Glazman L I 1992 Phys. Rev. B 45 13469
[18] Bryant G 1991 Phys. Rev. B 44 3064
[19] Molenkamp L W, Flensberg K and Kemerink M 1995 Phys. Rev. Lett. 75 4282
[20] Golden J M and Halperin B I 1996 Phys. Rev. B 53 3893
[21] Shi J J, Xia C X, Wei S Y and Liu Z X 2005 J. Appl. Phys. 97 083705
[22] Li S S and Xia J B 2007 J. Appl. Phys. 101 093716
[23] Liu L Z and Liu J J 2007 J. Appl. Phys. 102 033709
[24] Sahin M 2009 J. Appl. Phys. 106 063710
[25] Kayanuma Y 1991 Phys. Rev. B 44 13085
[26] Goff S L and Stébé B 1993 Phys. Rev. B 47 1383
Brown J W and Spector H N 1986 J. Appl. Phys. 59 1179
[27] López-Gondar J and Albuquerquee Castro J and Oliveira L E 1990 Phys. Rev. B 42 7069