摘要Multi-wavelength seed laser can mitigate stimulated Brillouin scattering (SBS) and improve the output power of the narrow-linewidth fiber amplifier. In this present study, coherent combining of two fiber amplifiers seeded by a multi-wavelength laser is proposed and demonstrated using stochastic parallel gradient descent (SPGD) algorithm. The long-exposure visibility of the far field interference pattern is increased from 0.15 to 0.97 when the system evolves from open-loop to closed-loop. The feasibility of coherent combining of fiber amplifiers seeded by multi-wavelength seed laser is validated.
Abstract:Multi-wavelength seed laser can mitigate stimulated Brillouin scattering (SBS) and improve the output power of the narrow-linewidth fiber amplifier. In this present study, coherent combining of two fiber amplifiers seeded by a multi-wavelength laser is proposed and demonstrated using stochastic parallel gradient descent (SPGD) algorithm. The long-exposure visibility of the far field interference pattern is increased from 0.15 to 0.97 when the system evolves from open-loop to closed-loop. The feasibility of coherent combining of fiber amplifiers seeded by multi-wavelength seed laser is validated.
[1] Galvanauskas A 2004 Opt. Photon. News 15 42
[2] He B, Lou Q H and Zhou J 2006 Chin. J. Laser 33 1153
[3] Li L, Schülzgen A, Li H, Temyanko V L, Moloney J V and Peyghambarian N 2007 J. Opt. Soc. Am. B 24 1721
[4] He B, Lou Q H, Zhou J, Zheng Y H, Xue D, Dong J X, Wei Y R, Zhang F P, Qi Y F, Zhu J Q, Li J Y, Li S Y and Wang Z J 2007 Chin. Opt. Lett. 5 412
[5] Wu T W, Chang W Z, Galvanauskas A and Winful H G 2009 Opt. Express 17 19509
[6] Ma Y X, Liu Z J, Zhou P, Wang X L, Ma H T, Li X, Si Lei and Xu X J 2009 Chin. Phys. Lett. 26 044204
[7] Zhou P, Liu Z J, Wang X L, Ma Y X, Li X, Xu X J and Guo S F 2009 Chin. Phys. Lett. 26 044202
[8] Wang X L, Ma Y X, Zhou P, Ma H T, Li X, Xu X J and Liu Z J 2009 Laser Phys. 19 984
[9] Zhou P, Liu Z J, Wang X L, Ma Y X, Ma H T and Xu X J 2009 Opt. Laser Technol. 41 853
[10] Shay T M, Benham V, Bake J T, Sanchez A D, Pilkington D and Lu A C A 2007 IEEE J. Sel. Top. Quantum Electron. 13 480
[11] Kansky J E, Yu C X, Murphy D V, Shaw S E J, Lawrence R C and Higgs C 2006 Proc. SPIE 6306 63060G
[12] Anderegg J, Brosnan S, Cheung E, Epp P, Hammons D, Komine H, Weber M and Wickham M 2006 Proc. SPIE 6102 61020U
[13] Liu L, Vorontsov M A, Polnau E P et al 2007 Proc. SPIE 6708 67080K
[14] Grumman 2009 Northrop Grumman Scales New Heights in Electric Laser Power, Achieves 100 Kilowatts From a Solid-State Laser
[15] Limpert J, Röser F, Klingebiel S, Schreiber T, Wirth C, Peschel T, Eberhardt R, Tünnermann A, Tünnermann 2007 IEEE J. Sel. Top. Quantum Electron. 13 537
[16] Zhou P, Ma Y X, Wang X L, Ma H T, Xu X J and Liu Z J 2009 Opt. Lett. 34 2939
[17] Gray S, Liu A, Walton D T, Wang J, Li M, Chen X, Boh A R, Demeritt J A and Zenteno L A 2007 Opt. Express 15 17044
[18] Dajani I, Zeringue C and Shay T 2009 IEEE J. Sel. Top. Quantum Electron. 15 406
[19] Weßels P, Ade P, Auerbach M, Wandt D and Fallnich C 2004 Opt. Express 12 4443
[20] Dajani I, Zeringue C, Bronder T J, Shay T, Gavrielides A and Robin C 2008 Opt. Express 16 14233
[21] Zhang Z X, Wu J, Xu K, Hong X B and Lin J T 2009 Opt. Express 17 17200
[22] Bellemare A, Karasek M and Rochette M 2000 IEEE J. Lightwave Technol. 18 825
[23] Slavík R and Larochelle S 2002 Opt. Lett. 27 28
[24] Koechner W 2005 Solid-state Laser Engineering 6th edn (New York: Springer)
[25] Carhart G W, Ricklin J C, Sivokon V P and Vorontsov M A 1997 Proc. SPIE 3126 221
[26] Vorontsov M A and Carhart G W 1997 Opt. Lett. 22 907
[27] Vorontsov M A, Carhart G W, Cohen M and Cauwenberghs G 2000 J. Opt. Soc. Am. A 17 1440