摘要We study in phase space a zero-dimensional system of Brownian particles which move in a periodic potential and subject to an internal time derivative Ornstein--Uhlenbeck noise. To resolve the Fokker--Planck equation in such a case, we propose an approximate analytical method. The theoretical predictions exhibit a second order noise-induced nonequilibrium phase transition, which is confirmed by numerical simulation results. The phase transition brings the system from an ergodicity to a nonergodicity phase as the potential barrier height decreases.
Abstract:We study in phase space a zero-dimensional system of Brownian particles which move in a periodic potential and subject to an internal time derivative Ornstein--Uhlenbeck noise. To resolve the Fokker--Planck equation in such a case, we propose an approximate analytical method. The theoretical predictions exhibit a second order noise-induced nonequilibrium phase transition, which is confirmed by numerical simulation results. The phase transition brings the system from an ergodicity to a nonergodicity phase as the potential barrier height decreases.
[1] Gammaitoni L, Hanggi P, Jung P and Marchesoni F 1998 Rev. Mod. Phys. 70 223 [2] Hanggi P and Bartussek R 1996 Nonlinear Physicsand Complex Systems---Current Status and Future Trends ed Parisi J, Muller S C and Zimmerman W Lecture Notesin Physics (Berlin: Springer) vol 476 p 294 [3] Horsthemke W and Lefever R 1984 Noise-InducedTransitions (Berlin: Springer) [4]Agudov N and Spagnolo B 2001 Phys. Rev. E 64035102(R) [5] Van den Broeck C, Parrondo J M R and Toral R 1994 Phys. Rev. Lett. 73 3395 [6] Van den Broeck C, Parrondo J M R, Armero J andHernandez-Machado A 1994 Phys. Rev. E 49 2639 [7] Van den Broeck C, Parrondo J M R and Toral R and Kawai R1997 Phys. Rev. E 55 4084 [8] Parrondo J M R, van den Broeck C, Buceta J and de la RubiaF J 1996 Physica A 224 153 [9] Garcia-Ojalvo J, Parrondo J M R, Sancho J M and Vanden Broeck C 1996 Phys. Rev. E 54 6918 [10] Landa P S and Zaikin A A 1996 Phys. Rev. E 54 3535 [11] Landa P S and Zaikin A A 1997 J. Exp. Theor. Phys. 84 197 [12] Landa P S 1996 Nonlinear Oscillations and Waves inDynamical Systems(Dordrecht: Kluwer) [13] Landa P S and Zaikin A A 1997 Applied NonlinearDynamics and Stochastic Systems near the Millennium ed Kadtke J B AIP Conf. Proc. No 411 (New York: AIP) [14] Gudyma Yu V 2004 Physica A 331 61 [15] Carrillo O, Iba\`{nes M, Garrcia-Ojalvo J,Casademunt J and Sancho J M Prepeint arXiv: cond-mat/0302264 [16] Zaikin A A and Schimansky-Geier L 1998 Phys. Rev. E 58 4355 [17] Landa P S and Zaikin A A 1998 Computing AnticipatorySystems ed Dubois D AIP Conf. Proc. No 465 (New York: AIP) pp419--434 [18] Landa P S, Zaikin A A and Schimansky-Geier L 1998 Chaos Solitons and Fractals 9 1367 [19] Landa P S, Zaikin A A, Ushakov V G and Kurths J 2000 Phys. Rev. E 61 4809 [20] Garcia-Ojalvo J and Sancho J M 1999 Noise inSpatially Extended Systems (New York: Springer) [21] Bao J D and Zhuo Y Z 2005 Phys. Rev. E 71010102(R) [22] Bai Z W 2007 Commun. Theor. Phys. 48 112 [23] To C W S 2005 J. Sound Vibration 286 69 [24] Cavaleri L and Di Paola M 2000 Int. J. Non-LinearMech. 35 573 [25] Cavaleri L, Di Paola M and Failla G 2003 Int. J.Non-Linear Mech. 38 405 [26] Zhu W Q and Huang Z L 2001 Int. J. Non-Linear Mech. 36 39 [27] Zhu W Q, Huang Z L and Suzuki Y 2001 Int. J.Non-Linear Mech. 36 773