Brownian Markets
Roumen Tsekov*
Department of Physical Chemistry, University of Sofia, 1164 Sofia, Bulgaria
Abstract :Financial market dynamics are rigorously studied via the exact generalized Langevin equation. Assuming market Brownian self-similarity, the market return rate memory and autocorrelation functions are derived, which exhibit an oscillatory-decaying behavior with a long-time tail, similar to empirical observations. Individual stocks are also described via the generalized Langevin equation. They are classified by their relation to the market memory as heavy, neutral and light stocks, possessing different kinds of autocorrelation functions.
收稿日期: 2013-05-20
出版日期: 2013-11-21
:
89.65.Gh
(Economics; econophysics, financial markets, business and management)
05.40.-a
(Fluctuation phenomena, random processes, noise, and Brownian motion)
05.40.Jc
(Brownian motion)
[1] Bachelier L 1900 Ann. Sci. L'école Normale Suppl. 3e série 17 21 [2] Einstein A 1905 Ann. Phys. (Leipzig) 17 549 [3] Black F and Scholes M 1973 J. Polit. Econ. 81 637 [4] Dana R A and Jeanblanc M 2003 Financial Markets in Continuous Time (Berlin: Springer) [5] Cont R and Tankov P 2004 Financial Modelling with Jump Processes (Boca Raton: CRC) [6] Rostek S 2009 Option Pricing in Fractional Brownian Markets (Berlin: Springer) [7] Mantegna R N and Stanley H E 1999 An Introduction to Econophysics (Cambridge: Cambridge University Press) [8] Voit J 2005 The Statistical Mechanics of Financial Markets (Berlin: Springer) [9] McCauley J L 2009 Dynamics of Markets (Cambridge: Cambridge University Press) [10] Ito K 1951 Nagoya Math. J. 3 55 [11] Stratonovich R L 1966 SIAM J. Control 4 362 [12] Tsekov R 1997 J. Chem. Soc. Faraday Trans. 93 1751 [13] Tsekov R and Radoev B 1991 Commun. Dept. Chem. Bulg. Acad. Sci. 24 576 [14] Tsekov R and Radoev B 1992 J. Phys.: Condens. Matter 4 L303 [15] Lee M H 1992 J. Phys.: Condens. Matter 4 10487 [16] Zwanzig R 1960 J. Chem. Phys. 33 1338 [17] Mori H 1965 Prog. Theor. Phys. 33 423 [18] Doob J L 1942 Ann. Math. 43 351 [19] Takahashi M 1996 Financial Eng. Jpn. Markets 3 87 [20] Tsekov R 2010 arXiv:1005.1490 [cond-mat.stat-mech] [21] Gopikrishnan P, Meyer M, Amaral L A N and Stanley H E 1998 Eur. Phys. J. B 3 139 [22] Gopikrishnan P, Plerou V, Amaral L A N, Meyer M and Stanley H E 1999 Phys. Rev. E 60 5305 [23] Plerou V, Gopikrishnan P, Amaral L A N, Meyer M and Stanley H E 1999 Phys. Rev. E 60 6519 [24] Gu G F, Chen W and Zhou W X 2008 Physica A 387 495 [25] Plerou V and Stanley H E 2008 Phys. Rev. E 77 037101 [26] Mu G H and Zhou W X 2010 Phys. Rev. E 82 066103 [27] Zhou W X 2012 Quant. Finance 12 1253 [28] Rubin R J 1960 J. Math. Phys. 1 309 Rubin R J 1963 Phys. Rev. 131 964 [29] Sznajd-Weron K and Weron R 2002 Int. J. Mod. Phys. C 13 115 [30] Voit J 2003 Physica A 321 286 [31] Rachev S T, Mittnik S, Fabozzi F J, Focardi S M and Ja?i? T 2007 Financial Econometrics: From Basics to Advanced Modeling Techniques (Hoboken: Wiley) [32] Frank T D 2005 Nonlinear Fokker-Planck Equations (Berlin: Springer) [33] Pechukas P 1967 Phys. Rev. 164 174 [34] Baaquie B E 2004 Quantum Finance (Cambridge: Cambridge University Press) [35] Tsekov R 2007 J. Phys. A: Math. Theor. 40 10945
[1]
. [J]. 中国物理快报, 2015, 32(09): 90501-090501.
[2]
. [J]. Chin. Phys. Lett., 2012, 29(12): 128903-128903.
[3]
DUAN Wen-Qi** . Formation Mechanism of the Accumulative Magnification Effect in a Financial Time Series [J]. 中国物理快报, 2012, 29(3): 38903-038903.
[4]
YAN Yan1,2 , LIU Mao-Xin3 , ZHU Xiao-Wu4** , CHEN Xiao-Song3 . Principle Fluctuation Modes of the Global Stock Market [J]. 中国物理快报, 2012, 29(2): 28901-028901.
[5]
ZHANG Jiang**;WANG You-Gui
. Size Dependency of Income Distribution and Its Implications [J]. 中国物理快报, 2011, 28(3): 38901-038901.
[6]
XU Yan;GUO Liang-Peng;DING Ning;WANG You-Gui. Evidence of Scaling in Chinese Income Distribution [J]. 中国物理快报, 2010, 27(7): 78901-078901.
[7]
FU Xiu-Jun;Szeto K Y. Competition of Multi-Agent Systems: Analysis of a Three-Company Econophysics Model [J]. 中国物理快报, 2009, 26(9): 98901-098901.
[8]
DUAN Wen-Qi;SUN Bo-Liang. Empirical Analysis and Modeling of the Global Economic System [J]. 中国物理快报, 2009, 26(9): 98902-098902.
[9]
JIANG Zhi-Qiang;;ZHOU Wei-Xing;;. Direct Evidence for Inversion Formula in Multifractal Financial Volatility Measure [J]. 中国物理快报, 2009, 26(2): 28901-028901.
[10]
JIANG Shi-Mei;CAI Shi-Min;ZHOU Tao;;ZHOU Pei-Ling. Note on Two-Phase Phenomena in Financial Markets [J]. 中国物理快报, 2008, 25(6): 2319-2322.
[11]
DING Ning;WANG You-Gui. Power-Law Tail in the Chinese Wealth Distribution [J]. 中国物理快报, 2007, 24(8): 2434-2436.
[12]
DONG Lin-Rong. A Heterogeneous Agent Herding Model with Time and Space Effect [J]. 中国物理快报, 2006, 23(10): 2871-2783.
[13]
YANG Wei-Song;LI Ping;ZOU Shan-Shan;WANG Bing-Hong. Local Minority Game with Evolutionary Strategies [J]. 中国物理快报, 2006, 23(8): 1961-1964.
[14]
CAI Shi-Min;ZHOU Pei-Ling;YANG Hui-Jie;YANG Chun-Xia;WANG Bing-Hong;ZHOU Tao;. Empirical Study on the Volatility of the Hang-Seng Index [J]. 中国物理快报, 2006, 23(3): 754-757.
[15]
WANG Peng;WANG Shun-Jin;ZHANG Hua. Generalized Fokker--Planck Equation with Time-Dependent Transport Coefficients and a Quadratic Potential: Its Application in Econophysics [J]. 中国物理快报, 2005, 22(1): 5-8.