All-Fibre Ytterbium-Doped Photonic Crystal Fibre Laser with High Efficiency
CHEN Wei1,2, LI Jin-Yan1,2, LU Pei-Xiang1, LI Shi-Yu2, JI Ling-Ling1, JIANG Zuo-Wen2, ZHANG Ji-Huang1, PENG Jing-Gang2
1Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 4300742National Key Laboratory for Next Generation Fiber Communication Technologies and Networks, Fiberhome Telecommunication Technologies Co. Ltd, Wuhan 430074
All-Fibre Ytterbium-Doped Photonic Crystal Fibre Laser with High Efficiency
CHEN Wei1,2;LI Jin-Yan1,2;LU Pei-Xiang1;LI Shi-Yu2, JI Ling-Ling1;JIANG Zuo-Wen2;ZHANG Ji-Huang1;PENG Jing-Gang2
1Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 4300742National Key Laboratory for Next Generation Fiber Communication Technologies and Networks, Fiberhome Telecommunication Technologies Co. Ltd, Wuhan 430074
摘要A double-cladding ytterbium-doped photonic crystal fibre (PCF) with a 350-μm2 effective area is fabricated. The measurement results show that the PCF has high absorption peak at 915nm. Its fluorescence lifetime is 840μs. Laser experiments with all-fibre configurations are carried out with this fibre. A continuous-wave output power of 3.96W is achieved with a 5.2W launched pump power. The central wavelength of the output spectrum is 1080.22nm. The results show that the PCF laser has a high slope efficiency of 79.6% and light conversion efficiency of 76.2%.
Abstract:A double-cladding ytterbium-doped photonic crystal fibre (PCF) with a 350-μm2 effective area is fabricated. The measurement results show that the PCF has high absorption peak at 915nm. Its fluorescence lifetime is 840μs. Laser experiments with all-fibre configurations are carried out with this fibre. A continuous-wave output power of 3.96W is achieved with a 5.2W launched pump power. The central wavelength of the output spectrum is 1080.22nm. The results show that the PCF laser has a high slope efficiency of 79.6% and light conversion efficiency of 76.2%.
[1]Zhou J, Lou Q H and Kong L F 2004 Chin. Phys. Lett. 21 1083 [2] Jeong Y, Nilsson J, Sahu J K, Soh D B, Dupriez P, CodemardC A, Baek S, Payne D N, Horley R, Alvarez-Chavez J A and Turner P W2005 Opt. Lett. 30 955 [3] Hadrich S, Schreiber T, Pertsch T, Limpert J, PeschelT, Eberhardt R and Tunnermann A 2006 Opt. Express 146091 [4] Li M J, Chen X, Wang J, Liu A P, Gray S, Walton D T, BohRuffin A, Demeritt J and Zenteno L 2007 Proc. SPIE 646964690H-1 [5] Jiang Z and Marciante J R 2006 J. Opt. Soc. Am. B 23 2051 [6] Zhao C J, Fan D Y, Peng R W, Tang Z X and Ye Y X 2006 Chin. Phys. Lett. 23 2793 [7] Wang P, Cooper L J, Sahu J K and Clarkson W A 2006 Opt. Lett. 31 226 [8] Hansen K P, Broeng J and Skovgaard P M W 2005 SPIE 5709 273 [9] Wadsworth W J, Knight J C, Reeves W H, Russell P St J andArriaga J 2000 Electron. Lett. 36 1452 [10] Limpert J, Deguil-Robin N, Manek-Honninger I, SalinF, Roser F, Liem A, Schreiber T, Nolte S, Zellmer H,Tunnermann A, Broeng J, Petersson A and Jakobsen C 2005 Opt. Express 13 1055 [11] Chen W, Li J Y, Li S Y, Li H Q, Jiang Z W, and Peng J G,2007 Chin. Opt. Lett. 5 383 [12] Birks T A, Knight J C and Russell P St J 1997 Opt.Lett. 22 961 [13] Dhar A, Ch. Paul M, Pal M, Mondal Kr A, Sen S, Maiti H Sand Sen R 2006 Opt. Express 14 9006 [14] Lavoute L, Roy P, Desfarges-Berthelemot A, Kerm\`{ene Vand F\`{evrier S 2006 Opt. Express 14 2994 [15] Armitage J R, Wyatt R, Ainslie B J and Craig-Ryan S P1989 Electron. Lett. 25 298 [16] Paschotta R, Nilsson J, Barber P R, Caplen J E, Tropper AC and Hanna D C 1997 Opt. Commun. 136 375