Optically Modulated Tunable O-Band Praseodymium-Doped Fluoride Fiber Laser Utilizing Multi-Walled Carbon Nanotube Saturable Absorber
H. Ahmad1,2** , M. F. Ismail1 , S. N. Aidit1
1 Photonics Research Center, University of Malaya, Kuala Lumpur 50603, Malaysia2 Physics Department, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
Abstract :A tunable and optically modulated fiber laser utilizing a multi-walled carbon nanotube based saturable absorber is demonstrated for operation in the O-band region. A praseodymium-doped fluoride fiber is used as the gain medium and the system is capable of generating modulated outputs at 1300 nm. Pulsed output is observed at pump powers of 511 mW and above, with repetition rates and pulse widths that can be tuned from 41 kHz and 3.4 μs to 48 kHz and 2.4 μs, respectively, at the maximum pump power available. A maximum average output power of 100 $\mu$W with a corresponding single pulse energy of 2.1 nJ is measured, while the tunability of the proposed laser is from 1290 nm to 1308 nm. The output is stable, with peak power fluctuations of $\sim$4 dB from the average value.
收稿日期: 2019-04-26
出版日期: 2019-09-21
[1] Wang J S, Vogel E M, Snitzer E, Jackel J L, da Silva V L and Silberberg Y 1994 J. Non-Cryst. Solids 178 109 [2] Karasek M 1975 Opt. Commun. 14 176 [3] Karasek M 1992 IEEE Photon. Technol. Lett. 4 1266 [4] Ohishi Y, Kanamori T and Takahashi S 1991 IEEE Photon. Technol. Lett. 3 688 [5] Sugawa T and Miyajima Y 1991 IEEE Photon. Technol. Lett. 3 616 [6] Sugioka K and Cheng Y 2014 Light: Sci. & Appl. 3 e149 [7] Tamaki T, Watanabe W and Itoh K 2006 Opt. Express 14 10460 [8] Fried N M and Murray K E 2005 J. Endourol. 19 25 [9] Stutzki F, Jansen F, Liem A, Jauregui C, Limpert J and Tünnermann A 2012 Opt. Lett. 37 1073 [10] El-Sherif A F and King T A 2003 Opt. Commun. 218 337 [11] Malinowski A, Vu K T, Chen K K, Nilsson J, Jeong Y, Alam S, Lin D and Richardson D J 2009 Opt. Express 17 20927 [12] Swan W C, Baumann E, Giorgetta F R and Newbury N R 2011 Opt. Express 19 24387 [13] Keller U, Miller D A B, Boyd G D, Chiu T H, Ferguson J F and Asom M T 1992 Opt. Lett. 17 505 [14] Keller U, Weingarten K J, Kärtner F X, Kopf D, Braun B, Jung I D, Fluck R, Hönninger C, Matuschek N and Aus der Au J 1996 IEEE J. Sel. Top. Quantum Electron. 2 435 [15] Hulman M, Pfeiffer R and Kuzmany H 2004 New J. Phys. 6 1 [16] Paschotta R, Häring R, Gini E, Melchior H, Keller U, Offerhaus H L and Richardson D J 1999 Opt. Lett. 24 388 [17] Martinez A and Sun Z 2013 Nat. Photon. 7 842 [18] Iijima S 1991 Nature 354 56 [19] Liu X, Han D, Sun Z, Zeng C, Lu H, Mao D, Cui Y and Wang F 2013 Sci. Rep. 3 2718 [20] Zhou D P, Wei L, Dong B and Liu W K 2010 IEEE Photon. Technol. Lett. 22 9 [21] Set S Y, Yaguchi H, Tanaka Y and Jablonski M 2004 IEEE J. Sel. Top. Quantum Electron. 10 137 [22] Sun Z, Hasan T, Wang F, Rozhin A G, White I H and Ferrari A C 2010 Nano Res. 3 404 [23] Sun Z, Rozhin A G, Wang F, Scardaci V, Milne W I, White I H, Hennrich F and Ferrari A C 2008 Appl. Phys. Lett. 93 061114 [24] Cheng K N, Lin Y H and Lin G R 2013 Laser Phys. 23 045105 [25] Zhang L, Wang Y G, Yu H J, Sun L, Hou W, Lin X C and Li J M 2011 Laser Phys. 21 1382 [26] Banhart F 1999 Rep. Prog. Phys. 62 1181 [27] Ramadurai K, Cromer C L, Dillon A C, Mahajan R L and Lehman J H 2009 J. Appl. Phys. 105 093106 [28] Ahmad H, Reduan S A, Zulkifli A Z and Tiu Z C 2017 Appl. Opt. 56 3841 [29] Ahmad F, Haris H, Nor R M, Zulkepely N R, Ahmad H and Harun S W 2014 Chin. Phys. Lett. 31 034204 [30] Ahmad H, Ismail M F, Hassan S N M, Ahmad F, Zulkifli M Z and Harun S W 2014 Appl. Opt. 53 7025 [31] Chernysheva M, Mou C, Arif R, AlAraimi M, Rümmeli M, Turitsyn S and Rozhin A 2016 Sci. Rep. 6 24220 [32] Ahmad H, Muhamad A, Sharbirin A S, Samion M Z and Ismail M F 2017 Opt. Commun. 383 359 [33] Kuznetsov A G 2013 Optoelectron. Instrum. Data Proc. 49 383 [34] Myslinski P, Chrostowski J, Koningstein J A and Simpson J R 1993 Appl. Opt. 32 286 [35] Woodward R I, Kelleher E J R, Howe R C T, Hu G, Torrisi F, Hasan T, Popov S V and Taylor J R 2014 Opt. Express 22 31113 [36] Degnan J J 1995 IEEE J. Quantum Electron. 31 1890
[1]
. [J]. 中国物理快报, 2022, 39(12): 123401-.
[2]
. [J]. 中国物理快报, 2022, 39(10): 104201-.
[3]
. [J]. 中国物理快报, 2021, 38(6): 64201-.
[4]
. [J]. 中国物理快报, 2020, 37(5): 54201-.
[5]
. [J]. 中国物理快报, 2020, 37(3): 34203-.
[6]
. [J]. 中国物理快报, 2019, 36(11): 114202-.
[7]
. [J]. 中国物理快报, 2019, 36(4): 44202-.
[8]
. [J]. 中国物理快报, 2016, 33(01): 14205-014205.
[9]
. [J]. 中国物理快报, 2015, 32(12): 124201-124201.
[10]
. [J]. 中国物理快报, 2015, 32(09): 94201-094201.
[11]
. [J]. 中国物理快报, 2015, 32(07): 74205-074205.
[12]
. [J]. 中国物理快报, 2015, 32(5): 54210-054210.
[13]
. [J]. 中国物理快报, 2014, 31(09): 93201-093201.
[14]
. [J]. 中国物理快报, 2014, 31(07): 74206-074206.
[15]
. [J]. Chin. Phys. Lett., 2013, 30(3): 34209-034209.