Monolithic 0–f Scheme-Based Frequency Comb Directly Driven by a High-Power Ti:Sapphire Oscillator
Jian-Wang Jiang1,2 , Shao-Bo Fang2,3,4** , Zi-Yue Zhang2 , Jiang-Feng Zhu1 , Hai-Nian Han2 , Guo-Qing Chang2 , Zhi-Yi Wei2,3,4
1 School of Physics and Optoelectronic Engineering, Xidian University, Xi'an 7100712 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 1001903 University of Chinese Academy of Sciences, Beijing 1000494 Songshan Lake Material Laboratory, Dongguan 523808
Abstract :A monolithic 0–$f$ scheme-based femtosecond optical frequency comb directly driven by a high-power Ti:sapphire laser oscillator is demonstrated. The spectrum covering from 650 nm to 950 nm is generated from the Ti:sapphire oscillator with a repetition rate of 170 MHz. The average output power up to 630 mW is delivered under the pump power of 4.5 W. A 44-dB signal-to-noise ratio (SNR) of the carrier-envelope phase offset (CEO) beat note is achieved under the resolution of 100 kHz and is long-term stabilized to a reference source at 20 MHz. The integrated phase noise (IPN) in the range from 1 Hz to 1 MHz is calculated to be 138 mrad, corresponding to the timing jitter of 63 as at the central wavelength of 790 nm.
收稿日期: 2020-03-01
出版日期: 2020-04-25
:
42.55.-f
(Lasers)
42.60.Fc
(Modulation, tuning, and mode locking)
42.60.Lh
(Efficiency, stability, gain, and other operational parameters)
引用本文:
. [J]. 中国物理快报, 2020, 37(5): 54201-.
Jian-Wang Jiang, Shao-Bo Fang, Zi-Yue Zhang, Jiang-Feng Zhu, Hai-Nian Han, Guo-Qing Chang, Zhi-Yi Wei. Monolithic 0–f Scheme-Based Frequency Comb Directly Driven by a High-Power Ti:Sapphire Oscillator. Chin. Phys. Lett., 2020, 37(5): 54201-.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/37/5/054201
或
https://cpl.iphy.ac.cn/CN/Y2020/V37/I5/54201
[1] Diddams S A, Jones D J, Ye J et al 2000 Phys. Rev. Lett. 84 5102 [2] Timmers H, Kowligy A, Lind A et al 2018 Optica 5 727 [3] Eckstein J N, Ferguson A I and Hänsch T W 1978 Phys. Rev. Lett. 40 847 [4] Jones D J, Diddams S A, Ranka J K et al 2000 Science 288 635 [5] Apolonski A, Poppe A, Tempea G et al 2000 Phys. Rev. Lett. 85 740 [6] Niering M, Holzwarth R, Reichert J et al 2000 Phys. Rev. Lett. 84 5496 [7] Zhang W, Han H, Zhao Y et al 2009 Opt. Express 17 6059 [8] Inaba H, Daimon Y, Hong F L et al 2002 Opt. Lett. 14 5223 [9] Li J, Yi-Chi Z, Shao-Shan X et al 2013 Chin. Phys. Lett. 30 103201 [10] Yost D C, Schibli T R, Ye J et al 2009 Nat. Phys. 5 815 [11] Tzallas P, Charalambidis D, Papadogiannis N A et al 2003 Nature 426 267 [12] Udem T, Holzwarth R and Hänsch T W 2002 Nature 416 233 [13] Drescher M, Hentschel M, Kienberger R et al 2001 Science 291 1923 [14] Wilken T, Curto G L, Probst R A et al 2012 Nature 485 611 [15] Brabec T and Krausz F 2000 Rev. Mod. Phys. 72 545 [16] Rieker G B, Giorgetta F R, Swann W C et al 2014 Optica 1 290 [17] Holzwarth R, Udem T, Hänsch T W et al 2000 Phys. Rev. Lett. 85 2264 [18] Mücke O D, Ell R, Winter A et al 2005 Opt. Express 13 5163 [19] Fortier T M, Jones D J and Cundiff S T 2003 Opt. Lett. 28 2198 [20] Matos L and Kleppner D 2004 Opt. Lett. 29 1683 [21] Fortier T M, Bartels A and Diddams S A 2006 Opt. Lett. 31 1011 [22] Miret J J, Silvestre E and Andrés P 2009 Opt. Express 17 9197 [23] Ferreiro T I, Sun J and Reid D T 2011 Opt. Express 19 24159 [24] Fortier T M, Ye J, Cundiff S T et al 2002 Opt. Lett. 27 445 [25] Yu Z, Han H, Xie Y et al 2016 Opt. Express 24 3103 [26] Del'Haye P, Schliesser A, Arcizet O et al 2007 Nature 450 1214 [27] Wang C, Zhang M, Yu M et al 2019 Nat. Commun. 10 978 [28] Fuji T, Rauschenberger J, Apolonski A et al 2005 Opt. Lett. 30 332 [29] Fuji T, Rauschenberger J, Gohle C et al 2005 New J. Phys. 7 1 [30] Wei W, Han H, Zhang W et al 2010 Advances in Solid State Lasers: Development and Applications ed Grishin M (Rijeka: InTech) p 301 [31] Yu Z, Han H, Xie Y et al 2016 Chin. Phys. B 25 044205 [32] Koke S, Grebing C, Frei H et al 2010 Nat. Photon. 4 462 [33] Lücking F, Assion A, Apolonski A et al 2012 Opt. Lett. 37 2076
[1]
. [J]. 中国物理快报, 2022, 39(12): 123401-.
[2]
. [J]. 中国物理快报, 2022, 39(10): 104201-.
[3]
. [J]. 中国物理快报, 2021, 38(6): 64201-.
[4]
. [J]. 中国物理快报, 2020, 37(3): 34203-.
[5]
. [J]. 中国物理快报, 2019, 36(11): 114202-.
[6]
. [J]. 中国物理快报, 2019, 36(10): 104202-.
[7]
. [J]. 中国物理快报, 2019, 36(4): 44202-.
[8]
. [J]. 中国物理快报, 2016, 33(01): 14205-014205.
[9]
. [J]. 中国物理快报, 2015, 32(12): 124201-124201.
[10]
. [J]. 中国物理快报, 2015, 32(09): 94201-094201.
[11]
. [J]. 中国物理快报, 2015, 32(07): 74205-074205.
[12]
. [J]. 中国物理快报, 2015, 32(5): 54210-054210.
[13]
. [J]. 中国物理快报, 2014, 31(09): 93201-093201.
[14]
. [J]. 中国物理快报, 2014, 31(07): 74206-074206.
[15]
. [J]. Chin. Phys. Lett., 2013, 30(3): 34209-034209.