摘要We study the existence and stability of two-dimensional discrete breathers in a two-dimensional discrete diatomic Klein-Gordon lattice consisting of alternating light and heavy atoms, with nearest-neighbor harmonic coupling. Localized solutions to the corresponding nonlinear differential equations with frequencies inside the gap of the linear wave spectrum, i.e. two-dimensional gap breathers, are investigated numerically. The numerical results of the corresponding algebraic equations demonstrate the possibility of the existence of two-dimensional gap breathers with three types of symmetries, i.e., symmetric, twin-antisymmetric and single-antisymmetric. Their stability depends on the nonlinear on-site potential (soft or hard), the interaction potential (attractive or repulsive) and the center of the two-dimensional gap breathers (on a light or a heavy atom).
Abstract:We study the existence and stability of two-dimensional discrete breathers in a two-dimensional discrete diatomic Klein-Gordon lattice consisting of alternating light and heavy atoms, with nearest-neighbor harmonic coupling. Localized solutions to the corresponding nonlinear differential equations with frequencies inside the gap of the linear wave spectrum, i.e. two-dimensional gap breathers, are investigated numerically. The numerical results of the corresponding algebraic equations demonstrate the possibility of the existence of two-dimensional gap breathers with three types of symmetries, i.e., symmetric, twin-antisymmetric and single-antisymmetric. Their stability depends on the nonlinear on-site potential (soft or hard), the interaction potential (attractive or repulsive) and the center of the two-dimensional gap breathers (on a light or a heavy atom).
[1] Chen W and Mills D L 1987 Phys. Rev. Lett. 5860 [2] Mills D L and Trullinger S E 1987 Phys. Rev. B 36 947 [3] Coste J and Peyraud J 1989 Phys. Rev. B 3913086 Coste J and Peyraud J 1989 Phys. Rev. B 39 13096 [4] Kivahar Y S and Flytzanis N 1992 Phys. Rev. A 46 7972 [5] Chubykulo O A et al 1999 Phys. Rev. B 47 3135 [6] Kivahar Y S 1993 Phys. Rev. Lett. 70 3055 [7] Kovalev A S et al 1999 Phys. Rev. E 60 2309 [8] Livi R et al 1997 Nonlinearity 10 1421 [9] Cretegny T et al 1998 Physica D 119 88 [10] Zolotaryuk A V et al 2001 Physica B 296 251 [11] Maniadis P et al 2003 Phys. Rev. E 67 046612 [12] Gorbatch A V and Johansson M 2003 Phys Rev E 67 066608 [13] Cuevas J et al 2001 J. Phys. A: Math. Gen. 34L221 [14] Xu Q and Tian Q 2005 Sci. Chin. G 48 150 [15] Xu Q and Tian Q 2005 Chin. Sci. Bull. 50 5 [16] Koukouloyannis V et al 2005 Physica D 201 65 [17] Butt I A et al 2006 J. Phys. A: Math. Gen. 394955 [18] Bao F F and Takuji K 2007 Wave Motion 45 68 [19] Kousake I et al 2007 Physica D 225 184 [20] Mackay R S and Aubry S 1994 Nonlinearity 71623 [21] Aubry S 1994 Physica D 71 196 [22] Aubry S 1995 Physica D 86 248 [23] Marin J L and Aubry S 1996 Nonlinearity 91501 [24] Aubry S 1997 Physica D 103 201 [25] Marin J L et al 1998 Physica D 113 283 [26] Alvarez A et al 2002 New J. Phys. 4 721 [27] Xu Q and Tian Q 2008 Chin. Phys. 17 1331 [28] Kopidakis G and Aubry S 1999 Physica D 130155 [29] Xu Q and Tian Q 2008 Chin. Phys. Lett. 253586