摘要The controllability of pressure-induced structural transformation in the hexagonal wurtzite-type MgTe is studied by a first-principles pseudopotential method within the generalized gradient approximation (GGA). Based on the transitional mechanisms of the wurtzite → NiAs and the wurtzite → rocksalt, a special method of loading biaxial pressure on the (010) and (001) planes of an orthorhombic cell is designed. At equal biaxial pressure of 2.75GPa, an abrupt volume collapse is found and the WZ phase transforms into an orthorhombic phase with a tiny distortion. While the pressure decreases to zero, three lattice parameters a, b and c become equal and a metastable rocksalt-type MgTe is obtained.
Abstract:The controllability of pressure-induced structural transformation in the hexagonal wurtzite-type MgTe is studied by a first-principles pseudopotential method within the generalized gradient approximation (GGA). Based on the transitional mechanisms of the wurtzite → NiAs and the wurtzite → rocksalt, a special method of loading biaxial pressure on the (010) and (001) planes of an orthorhombic cell is designed. At equal biaxial pressure of 2.75GPa, an abrupt volume collapse is found and the WZ phase transforms into an orthorhombic phase with a tiny distortion. While the pressure decreases to zero, three lattice parameters a, b and c become equal and a metastable rocksalt-type MgTe is obtained.
(Applications of density-functional theory (e.g., to electronic structure and stability; defect formation; dielectric properties, susceptibilities; viscoelastic coefficients; Rydberg transition frequencies))
[1] Fashinger W, Krump R, Brunthaler G, Ferreira S and SlitterH 1994 Appl. Phys. Lett. 65 3215 [2] Wang M W, Swenberg J F, Phillips M C, Yu E T, McCaldin JO, Grant R W and McGill T C 1994 Appl. Phys. Lett. 643455 [3] Zachariasen W 1927 Z. Phys. Chem. Stoechiom.Verwandtschaftsl. 128 417 [4] Klemm W and Wahl K 1951 Z. Anorg. Allg. Chem. 266 289 [5] Kuhn A, Chevy A and Naud M J 1971 J. Cryst. Growth 9 263 [6] Parker S G, Reinberg A R, Pinnell J E and Holton W C 1971 J. Electrochem. Soc. 118 979 [7] Yeh C Y, Lu Z W, Froyen S and Zunger A 1992 Phys.Rev. B 46 10086 [8] Van Camp P E and Van Doren V E 1995 Int. J. QuantumChem. 55 339 [9] Chaudhuri C B, Pari G, Mookerjee A and Bhattacharyya A K1999 Phys. Rev. B 60 11846 [10] Duman S, Ba{\v{gci S, T{\"{ut{\"{unc{\"{u H M andSrivastava G P 2006 Phys. Rev. B 73 205201 [11] Li T, Luo H, Greene R G, Ruoff A L, Trail S S and DisalvoF J 1995 Phys. Rev. Lett. 74 5232 [12] Phillips J C 1970 Rev. Mod. Phys. 42 317 [13] Cai Y, Wu S, Yu J and Xu R 2006 Phys. Rev. B 74 214112 [14] Li Y, Ma Y, Cui T, Yan Y and Zou G 2008 Appl. Phys.Lett. 92 101907 [15] Limpijumnong S and Lambrecht W R L 2001 Phys. Rev.B 63 104103 [16] Limpijumnong S and Jungthawan S 2004 Phys. Rev. B 70 054104 [17] Cai Y, Wu S, Xu R and Yu J 2006 Phys. Rev. B 73 184104 [18] Shimojo F, Kodiyalam S, {Ebbsj\"{o I, Kalia R K, NakanoA and Vashishta P 2004 Phys. Rev. B 70 184111 [19] Limpijumnong S and Lambrecht W R L 2001 Phys. Rev.Lett. 86 91 [20] Hatch D M, Stokes H T, Dong J, Gunter J, Wang H and LewisJ P 2005 Phys. Rev. B 71 184109 [21] Shimojo F, {Ebbsj\"{o I, Kalia R K, Nakano A, Rino J Pand Vashishta P 2000 Phys. Rev. Lett. 84 3338 [22] Catti M 2001 Phys. Rev. Lett. 87 035504 [23] Miao M S and Lambrecht W R L 2005 Phys. Rev. Lett. 94 225501 [24] Miao M S and Lambrecht W R L 2003 Phys. Rev. B 68 092103 [25] Cai Y and Xu R 2008 J. Phys.: Condens. Matter 20 485218 [26] Cai J and Chen N 2007 Phys. Rev. B 75 174116 [27] Jiang S, Bai L, Liu J, Xiao W, Li X, Li Y, Tang L, ZhangY, Zhang D and Zheng L 2009 Chin. Phys. Lett. 26 076101 [28] Segall M D, Lindan P J D, Probert M J, Pickard C J,Hasnip P J, Clark S J and Payne M C 2002 J. Phys.: Condens.Matter 14 2717 [29] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev.Lett 77 3865 [30] Mujica A, Rubio A, {Mu\~{noz A and Needs R J 2003 Rev. Mod. Phys. 75 863