摘要We provide an approximate method to determine the dominant heat transport mechanism responsible for the anomalous enhancement of thermal conductivity in aqueous nanofluids. Due to a large degree of randomness and scatter observed in the published experimental data, limits to nanofluid thermal conductivity are fixed analytically by taking into account the contribution of particle Brownian motion and clustering, and a regime diagram is developed. Experimental data from a range of independent published sources is used for validation of the developed regime diagram.
Abstract:We provide an approximate method to determine the dominant heat transport mechanism responsible for the anomalous enhancement of thermal conductivity in aqueous nanofluids. Due to a large degree of randomness and scatter observed in the published experimental data, limits to nanofluid thermal conductivity are fixed analytically by taking into account the contribution of particle Brownian motion and clustering, and a regime diagram is developed. Experimental data from a range of independent published sources is used for validation of the developed regime diagram.
M. CHANDRASEKAR;S. SURESH. Determination of Heat Transport Mechanism in Aqueous Nanofluids Using Regime Diagram[J]. 中国物理快报, 2009, 26(12): 124401-124401.
M. CHANDRASEKAR, S. SURESH. Determination of Heat Transport Mechanism in Aqueous Nanofluids Using Regime Diagram. Chin. Phys. Lett., 2009, 26(12): 124401-124401.
[1] Ahuja A S 1975 J. Appl. Phys. 46 3408 [2] Masuda H et al 1993 Netsu Bussei 4 227 [3] Choi S U S 1995 Developments and Applications ofNon-Newtonian Flows (New York: ASME) p 99 [4] Eastman J A, Choi S U S et al 1997 Enhanced ThermalConductivity through the Development of Nanofluids (Boston:Materials Research Society) p 3 [5] Lee S et al 1999 J. Heat Transfer 121 280 [6] Wang X et al 1999 J. Thermophys. Heat Transfer 13 474 [7] Murshed S M S et al 2008 Appl. Therm. Eng. 2817 [8] Chen H et al 2009 Particuology 7 151 [9] Xu J et al 2006 Chin. Phys. Lett. 23 2819 [10] Evans W et al 2008 Int. J. Heat Mass Transfer 51 1431 [11] Koo J and Kleinstreuer C 2004 J. Nanopart. Res. 6 577 [12] Chandrasekar M et al 2009 J. Nanosci. Nanotechnol. 9 533 [13] Jang S P and Choi S U S 2007 J. Heat Transfer 129 618 [14] Maxwell J C 1891 A Treatise on Electricity andMagnetism 3rd edn (Oxford: Clarendon) [15] Shukla R K et al 2005 Study of the Effective ThermalConductivity of Nanofluids (Florida: ASME International MechanicalEngineering Congress and Exposition) p\,1 [16] Wang B X et al 2003 Int. J. Heat Mass Transfer 46 2665 [17] Eapen J, Li J and Yip S 2007 Phys. Rev. E 76062501 [18] Das S K, Putra N et al 2003 J. Heat Transfer 125 567 [19] Xie H Q et al 2002 J. Appl. Phys. 91 4568 [20] Mintsa H A, Roy G et al 2009 Int. J. Therm. Sci. 48 363 [21] Zhang X et al 2007 Exp. Therm. Fluid Sci. 31593 [22] Murshed S M S et al 2005 Int. J. Therm. Sci. 44 367 [23] Yoo D H et al 2007 Thermochim. Acta 455 66 [24] Zhu H, Zhang C et al 2006 Appl. Phys. Lett. 89 023123 [25] Li Y H et al 2008 Chin. Phys. Lett. 25 3319