Transverse Multimode Evolution in Non-Adiabatic Optical Micro/Nanofiber Tapers
FU Jian1, XU Ying-Ying1, TANG Shao-Fang2, LI Yang1, SUN Shuo1
1State Key Laboratory of Modern Optical Instrumentation, Department of Optical Engineering, Zhejiang University, Hangzhou 3100272Qianjiang College, Hangzhou Normal University, Hangzhou 310012
Transverse Multimode Evolution in Non-Adiabatic Optical Micro/Nanofiber Tapers
FU Jian1, XU Ying-Ying1, TANG Shao-Fang2, LI Yang1, SUN Shuo1
1State Key Laboratory of Modern Optical Instrumentation, Department of Optical Engineering, Zhejiang University, Hangzhou 3100272Qianjiang College, Hangzhou Normal University, Hangzhou 310012
摘要The multimode evolution, optical losses and wavelength response of non-adiabatic micro/nano-fiber (MNF) tapers are numerically simulated using a three-dimensional finite-difference beam propagation method. For a non-adiabatic MNF taper, it is illustrated that optical losses vary with the transition region length and the optical wavelength. We explain how the complicated multimode evolutions result in the complicated optical loss and wavelength response properties, especially when the waist diameters are large enough to allow much higher-order modes. These results may offer valuable references for trapping and guiding cold atoms in atom optics and practical application of micro/nano-devices.
Abstract:The multimode evolution, optical losses and wavelength response of non-adiabatic micro/nano-fiber (MNF) tapers are numerically simulated using a three-dimensional finite-difference beam propagation method. For a non-adiabatic MNF taper, it is illustrated that optical losses vary with the transition region length and the optical wavelength. We explain how the complicated multimode evolutions result in the complicated optical loss and wavelength response properties, especially when the waist diameters are large enough to allow much higher-order modes. These results may offer valuable references for trapping and guiding cold atoms in atom optics and practical application of micro/nano-devices.
[1] Vahalal K J 2003 Nature 424 839 [2] Sumetsky M et al 2005 Appl. Phys. Lett. 86161108 [3] Birks T A and Li Y W 1992 J. Lightwave Technol. 10 432 [4] Ward J M et al 2006 Rev. Sci. Instrum. 77083105 [5] Kawasaki B S et al 1981 Opt. Lett. 6 327 [6] Jedrzcjewski K P et al 1986 Electron. Lett. 22 105 [7] Birks T A et al 2000 Opt. Lett. 25 1415 [8] Xu Y Z et al 2007 Chin. Phys. Lett. 24 734 [9] Sumetsky M 2006 Opt. Lett. 31 870 [10] Love J D et al 1991 IEE Proc. Optoelectron. 138 343 [11] Bilodeau F et al 1987 Opt. Lett. 12 634 [12] Ozeki T and Kawasaki B S 1976 Electron. Lett. 12 407 [13] Li Y H and Tong L M 2008 Opt. Lett. 33 303 [14] Jiang X S et al 2007 Appl. Phys. Lett. 90233501 [15] Jiang X S et al 2006 Appl. Phys. Lett. 89143513 [16] Jiang X S et al 2006 Appl. Phys. Lett. 88 223501 [17] Zhou Y et al 2009 Chin. Phys. Lett. 26 014215 [18] Kenny R P et al 1991 Electron. Lett. 27 1654 [19] Chung Y and Dagli N 1990 IEEE J. Quantum Electron. 26 1335 [20] Tong L M et al 2003 Nature 426 816 [21] Brambilla G et al 2004 Opt. Express 12 2258 [22] Tzoar N and Pascone R 1981 J. Opt. Soc. Am. 71 1107 [23] Li Y F and Lit J W Y 1985 J. Opt. Soc. Am. A 2 462 [24] Li Y F and Lit J W Y 1986 J. Opt. Soc. Am. A 3 161 [25] Bures J and Ghosh R 1999 J. Opt. Soc. Am. A 16 1992 [26] Ma Z et al 2007 Chin. Phys. Lett. 24 3006 [27] Snyder AW 1970 IEEE Trans. Microwave Theor.Technol. 18 383 [28] Balykin V I et al 2004 Phys. Rev. A 70 011401 [29] Fu J, Yin X and Tong L M 2007 J. Phys. B: AtMol. Opt. Phys. 40 4195 [30] Gu F X et al 2008 Nano Lett. 8 2757