The phenomenon of entropic stochastic resonance (ESR) in a two-dimensional confined system driven by a transverse periodic force is investigated when the colored fluctuation is included in the system. Applying the method of unified colored noise approximation, the approximate Fokker-Planck equation can be derived in the absence of the periodic force. Through the escaping rate of the Brownian particle from one well to the other, the power spectral amplification can be obtained. It is found that increasing the values of the noise correlation time and the signal frequency can suppress the ESR of the system.
The phenomenon of entropic stochastic resonance (ESR) in a two-dimensional confined system driven by a transverse periodic force is investigated when the colored fluctuation is included in the system. Applying the method of unified colored noise approximation, the approximate Fokker-Planck equation can be derived in the absence of the periodic force. Through the escaping rate of the Brownian particle from one well to the other, the power spectral amplification can be obtained. It is found that increasing the values of the noise correlation time and the signal frequency can suppress the ESR of the system.
[1] Benzi R, Sutera A and Vulpiani A 1981 J. Phys. A 14 L453 [2] McNamara B and Wiesenfeld K 1989 Phys. Rev. A 39 4854 [3] Jung P and Maye-Kress G 1995 Phys. Rev. Lett. 74 3955 [4] Bulsara A R and Gammaitoni L 1996 Phys. Today 49 (3) 39 [5] Gammaitoni L, Hänggi P, Jung P and Marchesoni F 1998 Rev. Mod. Phys. 70 224 [6] Hänggi P 2002 Chem. Phys. Chem. 3 285 [7] Anishchenko V S, Anishchenko A B, Neiman A B, Moss F and Schimansky-Geier L 1999 Phys. Usp. 42 7 [8] Vilar J M G and Rubi J M 1996 Phys. Rev. Lett. 77 2863 [9] Vilar J M G and Rubi J M 1997 Phys. Rev. Lett. 78 2886 [10] Schmid G, Goychuk I and Hänggi P 2001 Europhys. Lett. 56 22 [11] Rosso O A and Masoller C 2009 Phys. Rev. E 79 040106(R) [12] Borremeo M and Marchesoni F 2009 Eur. Phys. J. B 69 23--27 [13] Luo X and Zhu S 2003 Phys. Rev. E 67 021104 [14] Luo X and Zhu S 2004 Chin. Phys. 13 1201 [15] Wellens T, Shatokhin V and Buchleitner A 2004 Rep. Prog. Phys. 67 45 [16] Nicolis C R and Nicolis G 2007 Scholarpedia 2 1474 [17] Wu Dan, Zhu S 2008 Phys. Lett. A 372 5299 [18] Zhao X H, Long Z C, Zhang B, Yang N 2008 Chin. Phys. Lett. 25 1490 [19] Zeng C H, Xie C W 2008 Chin. Phys. Lett. 25 1587 [20] Shen C S, Chen H S, Zhang J Q 2008 Chin. Phys. Lett. 25 1591 [21] Guo F, Huang Z Q, Fan Y, Li S F, Zhang Y 2009 Chin. Phys. Lett. 26 100504 [22] Yasuda H, Miyaoka T, Horiguchi J, Yasuda A, Hänggi P and Yamamoto Y 2008 Phys. Rev. Lett. 100 118103 [23] Goychuk I and Hänggi P 2003 Phys. Rev. Lett. 91 070601 [24] Goychuk I and Hänggi P 2005 Phys. Rev. E 71 061906 [25] Burada P S, Schmid G, Reguera D, Vainstein M H, Rubi J M and Hänggi P 2008 Phys. Rev. Lett. 101 130602 [26] Jung P and Hänggi P 1991 Phys. Rev. A 44 8032 [27] Jung P and Hänggi P 1989 Europhys. Lett. 8 505 [28] Hille B 2001 Ion Channels of Excitable Membranes (Sinauer, Sunderland) [29] Barrer R M 1978 Zeolites and Clay Minerals as Sorbents and Molecular Sieves (London: Academic) [30] Berezhkovskii A M and Bezrukov S M 2005 Biophys. J. 88 L17 [31] Liu L, Li P S and Asher S A 1999 Nature 397 141 [32] Burada P S, Schmid G, Reguera D, Rubi J M and Hänggi P 2009 Eur. Phys. J. B 69 11 [33] Reguera D and Rubi J M 2001 Phys. Rev. E 64 061106 [34] Burada P S, Schmid G, Reguera D, Rubi J M and Hänggi. P 2007 Phys. Rev. E 75 051111 [35] Berezhkovskii A M, Pustovoit M A and Bezrukov S M 2007 J. Chem. Phys. 126 134706 [36] Hänggi P and Jung P 1995 Adv. Chem. Phys. 89 239 [37] Cao L, Wu D J and Ke S Z 1995 Phys. Rev. E 52 3228 [38] Fox R F 1986 Phys. Rev. A 34 4525 [39] Jia Y and Li J 1996 Phys. Rev. E 53 5786 [40] Hänggi P, Talkner P and Borkovec M 1990 Rev. Mod. Phys. 62 251