The generation of various entangled states is an essential task in quantum information processing. Recently, a scheme (PRA 79, 022304) has been suggested for generating Greenberger-Horne-Zeilinger state and cluster state with atomic ensembles based on the Rydberg blockade. Using similar resources as the earlier scheme, here we propose an experimentally feasible scheme of preparing arbitrary four-qubit W class of maximally and non-maximally entangled states with atomic ensembles in a single step. Moreover, we carefully analyze the realistic noises and predict that four-qubit W states can be produced with high fidelity (F~0.994) via our scheme.
The generation of various entangled states is an essential task in quantum information processing. Recently, a scheme (PRA 79, 022304) has been suggested for generating Greenberger-Horne-Zeilinger state and cluster state with atomic ensembles based on the Rydberg blockade. Using similar resources as the earlier scheme, here we propose an experimentally feasible scheme of preparing arbitrary four-qubit W class of maximally and non-maximally entangled states with atomic ensembles in a single step. Moreover, we carefully analyze the realistic noises and predict that four-qubit W states can be produced with high fidelity (F~0.994) via our scheme.
(Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)
引用本文:
HAN Yang;WU Chun-Wang;GAO Ming;LIANG Lin-Mei;CHEN Ping-Xing;LI Cheng-Zu. Preparation of Arbitrary Four-Qubit W State with Atomic Ensembles via Rydberg Blockade[J]. 中国物理快报, 2010, 27(4): 40307-040307.
HAN Yang, WU Chun-Wang, GAO Ming, LIANG Lin-Mei, CHEN Ping-Xing, LI Cheng-Zu. Preparation of Arbitrary Four-Qubit W State with Atomic Ensembles via Rydberg Blockade. Chin. Phys. Lett., 2010, 27(4): 40307-040307.
[1] Bennett C H et al 1993 Phys. Rev. Lett. 70 1895 [2] Ekert A K 1991 Phys. Rev. Lett. 67 661 [3] Bennett C H et al 1992 Phys. Rev. Lett. 69 2881 [4] Bollinger J J et al 1996 Phys. Rev. A 54 4649 [5] Kwiat P G et al 1995 Phys. Rev. Lett. 75 4337 [6] Hagley E et al 1997 Phys. Rev. Lett. 79 1 Osnaghi S et al 2001 Phys. Rev. Lett. 87 {037902} [7] Turchette Q A 1998 Phys. Rev. Lett. 81 3631 [8] Duan L M et al 2001 Nature 414 413 [9] Zhao B et al 2007 Phys. Rev. Lett. 98 240502 Chen Z B et al 2007 Phys. Rev. A 76 022329 [10] Jiang L et al 2007 Phys. Rev. A 76 012301 Simon C et al 2007 Phys. Rev. Lett. 98{190503} Sangouard N et al 2008 Phys. Rev. A 77{062301} [11] Duan L M 2002 Phys. Rev. Lett. 88 170402 Han C Xue P and Guo G C 2005 Phys. Rev. A 72 {034301} [12] Xue P and Guo G C 2003 Phys. Rev. A 67 034302 [13] Yuan Z S et al 2008 Nature 454 1098 Zhao B et al 2009 Nature Phys. 5 {95} Lu X S et al 2009 Chin. Phys. Lett. 26 {064204} [14] Lukin M D et al 2001 Phys. Rev. Lett. 87 037901 [15] Mohapatra A K et al 2007 Phys. Rev. Lett. 98 113003 [16] Petrosyan D and Fleischhauer M 2008 Phys. Rev. Lett. 100 170501 [17] Zwierz M and Kok P 2009 Phys. Rev. A 79 022304 [18] Gallagher T F 1994 Rydberg Atoms (Cambridge: Cambridge University) [19] Isenhower L et al 2010 Phys. Rev. Lett. 104 010503 Urban E et al 2009 Nature Phys. 5 {110} [20] Monroe C et al 1990 Phys. Rev. Lett. 65 1571 [21] Brion E et al 2007 Phys. Rev. Lett. 99 260501 [22] Bao X H et al 2008 Phys. Rev. Lett. 101 190501 [23] Barbieri M et al 2005 Phys. Rev. A 72 052110 [24] Rossi A et al 2009 Phys. Rev. Lett. 102 153902 [25] Day J O et al 2008 Phys. Rev. A 77 052712 [26] Walker T G and Saffman M 2008 Phys. Rev. A 77 032723 [27] Saffman M and Walker T G 2005 Phys. Rev. A 72 042302