Supercritical Characteristics of a Relaxation Oscillator
JI Feng, LIU Hui, YANG Zhenghai, SHI Kangjie, HE Daren, WANG Dakai
Department of Physics, Northwestern University, Xian 710069
Supercritical Characteristics of a Relaxation Oscillator
JI Feng;LIU Hui;YANG Zhenghai;SHI Kangjie;HE Daren;WANG Dakai
Department of Physics, Northwestern University, Xian 710069
关键词 :
05.45.+b ,
84.30.-r ,
03.40.-t
Abstract : A relaxation oscillator can be described by two maps: one circle and one inverse circle. The order of map depends on the function form of the modulation signal . Supercritical behaviors of the oscillator were studied experimentally and numerically. Two scaling laws S( f) ∝ f-δ and τ ∝ |f – fc |-γ were verified. Both the scaling exponents δ and γ2 increase when the order is getting larger.
Key words :
05.45.+b
84.30.-r
03.40.-t
出版日期: 1991-01-01
引用本文:
JI Feng;LIU Hui;YANG Zhenghai;SHI Kangjie;HE Daren;WANG Dakai. Supercritical Characteristics of a Relaxation Oscillator[J]. 中国物理快报, 1991, 8(1): 1-4.
JI Feng, LIU Hui, YANG Zhenghai, SHI Kangjie, HE Daren, WANG Dakai. Supercritical Characteristics of a Relaxation Oscillator. Chin. Phys. Lett., 1991, 8(1): 1-4.
链接本文:
https://cpl.iphy.ac.cn/CN/
或
https://cpl.iphy.ac.cn/CN/Y1991/V8/I1/1
[1]
FANG Jin-Qing;YU Xing-Huo. A New Type of Cascading Synchronization for Halo-Chaos and Its Potential for Communication Applications [J]. 中国物理快报, 2004, 21(8): 1429-1432.
[2]
He Wei-Zhong;XU Liu-Su;ZOU Feng-Wu. Dynamics of Coupled Quantum--Classical Oscillators [J]. 中国物理快报, 2004, 21(8): 1433-1436.
[3]
YIN Hua-Wei;LU Wei-Ping;WANG Peng-Ye. Determination of Optimal Control Strength of Delayed Feedback Control Using Time Series [J]. 中国物理快报, 2004, 21(6): 1013-1015.
[4]
HE Kai-Fen. Hopf Bifurcation in a Nonlinear Wave System [J]. 中国物理快报, 2004, 21(3): 439-442.
[5]
CHEN Jun;LIU Zeng-Rong. A Method of Controlling Synchronization in Different Systems [J]. 中国物理快报, 2003, 20(9): 1441-1443.
[6]
ZHANG Jie-Fang;;MENG Jian-Ping. New Coherent Structures in the Generalized (2+1)-Dimensional Nizhnik-Novikov-Veselov System [J]. 中国物理快报, 2003, 20(7): 1006-1008.
[7]
ZHENG Yong-Ai;NIAN Yi-Bei;LIU Zeng-Rong. Impulsive Synchronization of Discrete Chaotic Systems [J]. 中国物理快报, 2003, 20(2): 199-201.
[8]
FANG Jin-Qing;YU Xing-Huo;CHEN Guan-Rong. Controlling Halo-Chaos via Variable Structure Method [J]. 中国物理快报, 2003, 20(12): 2110-2113.
[9]
ZHANG Guang-Cai;ZHANG Hong-Jun;. Control Method of Cooling a Charged Particle Pair in a Paul Trap [J]. 中国物理快报, 2003, 20(11): 1924-1927.
[10]
ZHENG Yong-Ai;NIAN Yi-Bei;LIU Zeng-Rong. Impulsive Control for the Stabilization of Discrete Chaotic System [J]. 中国物理快报, 2002, 19(9): 1251-1253.
[11]
LI Ke-Ping;CHEN Tian-Lun. Phase Space Prediction Model Based on the Chaotic Attractor [J]. 中国物理快报, 2002, 19(7): 904-907.
[12]
ZHANG Hai-Yun; HE Kai-Fen. Charged Particle Motion in Temporal Chaotic and Spatiotemporal
Chaotic Fields [J]. 中国物理快报, 2002, 19(4): 481-484.
[13]
ZHOU Xian-Rong;MENG Jie;;ZHAO En-Guang;. Spectral Statistics in the Cranking Model [J]. 中国物理快报, 2002, 19(2): 184-186.
[14]
LIN Sheng-Lu;ZHANG Qiu-Ju;ZHAO Ke;SONG Xiao-Hong;ZHANG Yan-Hui. Semiclassical Calculations of Recurrence Spectra for Lithium Atoms in Parallel Electric and Magnetic Fields [J]. 中国物理快报, 2002, 19(1): 29-31.
[15]
HE Kai-Fen. Time-Averaged Behaviour at the Critical Parameter Point of Transition to Spatiotemporal Chaos
[J]. 中国物理快报, 2001, 18(9): 1176-1178.