We propose a new mass matrix ansatz: At the grand unified (GU) scale, the standard model (SM) Yukawa coupling matrix elements are integer powers of the square root of the GU gauge coupling constant ε≡√αGU , multiplied by order unity random complex numbers. It relates the hierarchy of the SM fermion masses and quark mixings to the gauge coupling constants, greatly reducing the SM parameters, and can give good fitting results of the SM fermion mass, quark mixing and CP violation parameters. This is a neat but very effective ansatz.
We propose a new mass matrix ansatz: At the grand unified (GU) scale, the standard model (SM) Yukawa coupling matrix elements are integer powers of the square root of the GU gauge coupling constant ε≡√αGU , multiplied by order unity random complex numbers. It relates the hierarchy of the SM fermion masses and quark mixings to the gauge coupling constants, greatly reducing the SM parameters, and can give good fitting results of the SM fermion mass, quark mixing and CP violation parameters. This is a neat but very effective ansatz.
ZHANG Yong-Chao;ZHANG De-Hai. Grand Unified Yukawa Matrix Ansatz: The Standard Model Fermion Mass, Quark Mixing and CP Violation Parameters[J]. 中国物理快报, 2010, 27(7): 71201-071201.
ZHANG Yong-Chao, ZHANG De-Hai. Grand Unified Yukawa Matrix Ansatz: The Standard Model Fermion Mass, Quark Mixing and CP Violation Parameters. Chin. Phys. Lett., 2010, 27(7): 71201-071201.
[1] Amsler C et al [Particle Data Group] 2008 Phys. Lett. B 667 1 [2] Xing Z Z, Zhang H and Zhou S 2008 Phys. Rev. D 77 113016 [3] Wolfenstein L 1983 Phys. Rev. Lett. 51 1945 [4] Cabibbo N 1963 Phys. Rev. Lett. 10 531 Kobayashi M and Maskawa T 1973 Prog. Theor. Phys. 49 652 [5] Froggatt C D and Nielsen H B 1979 Nucl. Phys. B 147 277 [6] Froggatt C D and Nielsen H B 1979 Nucl. Phys. B 164 114 Froggatt C D and Nielsen H B 2003 Surveys High Energy Phys. 18 55 [7] Dimopoulos S, Hall L J and Raby S 1992 Phys. Rev. D 45 4192 Dimopoulos S, Hall L J and Raby S 1992 Phys. Rev. Lett. 68 1984 Giudice G F 1992 Mod. Phys. Lett. A 7 2429 Babu K S and Shafi Q arXiv:hep-ph/9209214 Ramond P, Roberts R G and Ross G G 1993 Nucl. Phys. B 406 19 Leurer M, Nir Y, and Seiberg N 1994 Nucl. Phys. B 420 468 Ibanez L E and Ross G G 1994 Phys. Lett. B 332 100 Barbieri R, Dvali G and Hall L 1996 Phys. Lett. B 377 76 Chun E J and Lukas A 1996 phys. lett. B 387 99 Chkareuli J L and Froggatt C D 1999 Phys. Lett. B 450 158 Fritzsch H and Xing Z Z 2000 Prog. Part. Ncul. Phys. 45 1 Chkareuli J L, Froggatt C D and Nielsen H B 2002 Nucl. Phys. B 626 307 [8] Georgi H and Jarlskog C 1979 Phys. Lett. B 86 297 [9] Fritzsch H 1977 Phys. Lett. B 70 436 Fritzsch H 1978 Phys. Lett. B 73 317 Fritzsch H 1979 Nucl. Phys. B 155 189 Kitazoe T and Tanaka K 1978 Phys. Rev. D 18 3476 Harvey J A, Ramond P and Reiss D B 1980 Phys. Lett. B 92 309 Harvey J A, Ramond P and Reiss D B 1982 Nucl. Phys. B 199 223 [10] Gatto R, Sartori G and Tonin M 1968 Phys. Lett. B 28 128 Oakes R J 1969 Phys. Lett. B 29 683 Chanowitz M S, Ellis J R and Gaillard M K 1977 Nucl. Phys. B 128 506 Wilczek F and Zee Z 1977 Phys. Lett. B 70 418 Weinberg S 1977 Trans. New York Acad. Sci. 38 185 De Rújula A, Georgi H and Glashow S L 1977 Ann. Phys. 109 258 Buras A J et al 1978 Nucl. Phys. B 135 66 Hagiwara T et al 1978 Phys. Lett. B 76 602 Arason H et al 1993 Phys. Rev. D 47 232 Hall L J and Rasin A 1993 Phys. Lett. B 315 164 [11] Heckman J J and Vafa C arXiv:0811.2417 [hep-th] Heckman J J and Vafa C arXiv:0904.3101 [hep-th] Cecotti S et al arXiv:0910.0477 [hep-th] [12] Gibbons et al 2009 Phys. Rev. Lett. 102 121802 [13] Hall L J, Salem M P and Watari T 2007 Phys. Rev. D 76 093001 [14] Nelson A E and Strassler 2000 Journal of High Energy Physics 0009 030 [15] Choi K S 2008 Phys. Lett. B 668 392 [16] Froggatt C D, Nielsen H B and Smith D J 1996 Phys. Lett. B 385 150 [17] Barger V D, Berger M S and Ohmann P 1993 Phys. Rev. D 47 1093 [18] Arason H et al 1992 Phys. Rev. D 46 3945 Castaño D J, Piard E J and Ramond P 1994 Phys. Rev. D 49 4882 [19] Antusch S and Spinrath M 2008 Phys. Rev. D 78 075020
[1]
YANG Hai-Jun;CHEN Guo-Ming;YANG Min;XIONG Zhao-Hua;LU Liang;LU Yu-Sheng;CHEN He-Sheng;TANG Xiao-Wei;Martin Pohl*;JIN Bing-Nian*
. Single W Boson Production at √s = 189 GeV[J]. 中国物理快报, 2000, 17(4): 258-260.