Unconventional Geometric Quantum Gate in Circuit QED
ZHENG Xiao-Hu1,2, DONG Jun2, LIU Yu-Wen3, YANG Ming2, CAO Zhuo-Liang4
1Editorial Department of Journal, Anhui University, Hefei 230039 2Key Laboratory of Opto-electronic Information Acquisition and Manipulation (Ministry of Education), School of Physics and Material Science, Anhui University, Hefei 230039 3Artillery Academy of PLA, Hefei 230031 4Department of Physics and Electronic Engineering, Hefei Normal University, Hefei 230061
Unconventional Geometric Quantum Gate in Circuit QED
ZHENG Xiao-Hu1,2, DONG Jun2, LIU Yu-Wen3, YANG Ming2, CAO Zhuo-Liang4
1Editorial Department of Journal, Anhui University, Hefei 230039 2Key Laboratory of Opto-electronic Information Acquisition and Manipulation (Ministry of Education), School of Physics and Material Science, Anhui University, Hefei 230039 3Artillery Academy of PLA, Hefei 230031 4Department of Physics and Electronic Engineering, Hefei Normal University, Hefei 230061
We propose a scheme to implement an unconventional geometric phase gate in circuit QED, i.e. two superconducting charge qubits inside a superconducting transmission line resonator. The quantum operation depends only on global geometric features, and thus is insensitive to the state of the cavity mode.
We propose a scheme to implement an unconventional geometric phase gate in circuit QED, i.e. two superconducting charge qubits inside a superconducting transmission line resonator. The quantum operation depends only on global geometric features, and thus is insensitive to the state of the cavity mode.
[1] Shor P W 1999 SIAM Rev. 41 303 [2] Steane A M quant-ph/0207119 [3] Shor P W 1995 Phys. Rev. A 52 R2493 Steane A M 1996 Phys. Rev. Lett. 77 793 [4] Zanardi P and Rasetti M 1997 Phys. Rev. Lett. 79 3306 Duan L M and Guo G C 1997 Phys. Rev. Lett. 79 1953 [5] Zhu S L, Wang Z D, and Zhang Y D 2000 Phys. Rev. B 61 1142 Zhu S L and Wang Z D 2000 Phys. Rev. Lett. 85 1076 [6] Berry M V 1984 Proc. R. Soc. London A 392 45 [7] Aharonov Y and Anandan J 1987 Phys. Rev. Lett. 58 1593 [8] Duan L M, Cirac J I and Zoller P 2001 Science 292 1695 Pachos J, Zanardi P and Rasetti M 2002 Phys. Rev. A 61 010305(R) [9] Wang X B and Keiji M 2001 Phys. Rev. Lett. 87 097901 [10] Zheng S B 2006 Phys. Rev. A 74 032322 [11] Zhu S L and Wang Z D 2003 Phys. Rev. Lett. 91 187902 [12] Leibfried D, DeMarco B, Meyer V et al 2003 Nature 422 412 [13] Zheng S B 2004 Phys. Rev. A 70 052320 Chen C Y, Feng M, Zhang X L et al 2006 Phys. Rev. A 73 032344 Chen C Y, Zhang X L, Deng Z J et al 2006 Phys. Rev. A 74 032328 [14] Feng X L, Wang Z S, Wu C F et al 2007 Phys. Rev. A 75 052312 Wu C F, Wang Z S, Feng X L et al 2007 Phys. Rev. A 76 024302 Joshi A and Xiao M 2006 Phys. Lett. A 359 390 [15] Du J F, Zou P and Wang Z D 2006 Phys. Rev. A 74 020302(R) [16] Cen L X, Wang Z D and Wang S J 2006 Phys. Rev. A 74 032321 Xie H, Li H C, Yong R C et al 2007 Chin. Phys. 16 1009 [17] Zhu S L, Wang Z D and Zanardi P 2005 Phys. Rev. Lett. 94 100502 [18] Xue Z Y and Wang Z D 2007 Phys. Rev. A 75 064303 Xue Z Y, Wang Z D and Zhu S L 2008 Phys. Rev. A 77 024301 Xue Z Y, Zhu S L and Wang Z D 2009 Eur. Phys. J. D 55 223 [19] Wallraff A, Schuster D I, Blais A et al 2004 Nature 431 162 Schuster D I, Houckl A A, Schreier J A et al 2007 Nature 445 515 [20] Blais A, Huang R S, Wallraff A et al 2004 Phys. Rev. A 69 062320 Blais A, Gambetta J, Wallraff A et al 2007 Phys. Rev. A 75 032329 [21] You J Q and Nori F 2005 Phys. Today 58 42 Feng Z B and Yan R Y 2010 Chin. Phys. Lett. 27 010301 Wang Y M, Zou Y L, Liang L M et al 2009 Chin. Phys. Lett. 26 100304 [22] Wallraff A, Schuster D I, Blais A et al 2005 Phys. Rev. Lett. 95 060510 [23] Frunzio L, Wallraff A, Schuster D I et al 2005 IEEE Trans. Appl. Supercond. 15 860 Day P K, LeDuc H G, Mazin B A et al 2003 Nature 425 817