A Crisis with a Special Scaling Behavior
DING Xiao-ling1 , WU Shun-guang2 , YIN Yue-cai3 , HE Da-ren1,4
1 Department of Physics, Teachers College, Yangzhou University, Yangzhou 225002
2 Institute of Low Energy Nuclear Physics, Beijing Normal University, Beijing 100875
4 Department of Physics, Shenyang Teachers College, Shenyang 110031
4 CCAST (World Laboratory), P. O. Box 8730, Beijing 100080
A Crisis with a Special Scaling Behavior
DING Xiao-ling1 ;WU Shun-guang2 ;YIN Yue-cai3 ;HE Da-ren1,4
1 Department of Physics, Teachers College, Yangzhou University, Yangzhou 225002
2 Institute of Low Energy Nuclear Physics, Beijing Normal University, Beijing 100875
4 Department of Physics, Shenyang Teachers College, Shenyang 110031
4 CCAST (World Laboratory), P. O. Box 8730, Beijing 100080
关键词 :
05.45.+b
Abstract : A kind of crisis with special scaling properties has been observed in a discontinuous map. The crisis happens via a collision between a discontinuity of the mapping function and an unstable periodic orbit locating on the basin boundary of the chaotic attractor. The scaling property of the crisis is <τ>∝ ∈-1.8 , where <τ> and ∈ stand for the average characteristic time and the control parameter value crossing the critical point, respectively.
Key words :
05.45.+b
出版日期: 1999-03-01
引用本文:
DING Xiao-ling;WU Shun-guang;YIN Yue-cai;HE Da-ren;. A Crisis with a Special Scaling Behavior[J]. 中国物理快报, 1999, 16(3): 167-168.
DING Xiao-ling, WU Shun-guang, YIN Yue-cai, HE Da-ren,. A Crisis with a Special Scaling Behavior. Chin. Phys. Lett., 1999, 16(3): 167-168.
链接本文:
https://cpl.iphy.ac.cn/CN/
或
https://cpl.iphy.ac.cn/CN/Y1999/V16/I3/167
[1]
FANG Jin-Qing;YU Xing-Huo. A New Type of Cascading Synchronization for Halo-Chaos and Its Potential for Communication Applications [J]. 中国物理快报, 2004, 21(8): 1429-1432.
[2]
He Wei-Zhong;XU Liu-Su;ZOU Feng-Wu. Dynamics of Coupled Quantum--Classical Oscillators [J]. 中国物理快报, 2004, 21(8): 1433-1436.
[3]
YIN Hua-Wei;LU Wei-Ping;WANG Peng-Ye. Determination of Optimal Control Strength of Delayed Feedback Control Using Time Series [J]. 中国物理快报, 2004, 21(6): 1013-1015.
[4]
HE Kai-Fen. Hopf Bifurcation in a Nonlinear Wave System [J]. 中国物理快报, 2004, 21(3): 439-442.
[5]
CHEN Jun;LIU Zeng-Rong. A Method of Controlling Synchronization in Different Systems [J]. 中国物理快报, 2003, 20(9): 1441-1443.
[6]
ZHENG Yong-Ai;NIAN Yi-Bei;LIU Zeng-Rong. Impulsive Synchronization of Discrete Chaotic Systems [J]. 中国物理快报, 2003, 20(2): 199-201.
[7]
FANG Jin-Qing;YU Xing-Huo;CHEN Guan-Rong. Controlling Halo-Chaos via Variable Structure Method [J]. 中国物理快报, 2003, 20(12): 2110-2113.
[8]
ZHANG Guang-Cai;ZHANG Hong-Jun;. Control Method of Cooling a Charged Particle Pair in a Paul Trap [J]. 中国物理快报, 2003, 20(11): 1924-1927.
[9]
ZHENG Yong-Ai;NIAN Yi-Bei;LIU Zeng-Rong. Impulsive Control for the Stabilization of Discrete Chaotic System [J]. 中国物理快报, 2002, 19(9): 1251-1253.
[10]
LI Ke-Ping;CHEN Tian-Lun. Phase Space Prediction Model Based on the Chaotic Attractor [J]. 中国物理快报, 2002, 19(7): 904-907.
[11]
ZHANG Hai-Yun; HE Kai-Fen. Charged Particle Motion in Temporal Chaotic and Spatiotemporal
Chaotic Fields [J]. 中国物理快报, 2002, 19(4): 481-484.
[12]
ZHOU Xian-Rong;MENG Jie;;ZHAO En-Guang;. Spectral Statistics in the Cranking Model [J]. 中国物理快报, 2002, 19(2): 184-186.
[13]
LIN Sheng-Lu;ZHANG Qiu-Ju;ZHAO Ke;SONG Xiao-Hong;ZHANG Yan-Hui. Semiclassical Calculations of Recurrence Spectra for Lithium Atoms in Parallel Electric and Magnetic Fields [J]. 中国物理快报, 2002, 19(1): 29-31.
[14]
HE Kai-Fen. Time-Averaged Behaviour at the Critical Parameter Point of Transition to Spatiotemporal Chaos
[J]. 中国物理快报, 2001, 18(9): 1176-1178.
[15]
WANG Wen-Ge. Approximate Scaling Behaviour of Local Spectral Density of
States at Relatively Weak Perturbation: a Schematic Shell Model [J]. 中国物理快报, 2001, 18(6): 731-733.