摘要We study the chaotic dynamics of a periodically modulated Josephson junction with damping. The general solution of the first-order perturbed equation is constructed by using the direct perturbation technique. It is theoretically found that the boundedness conditions of the general solution contain the Melnikov chaotic criterion. When the perturbation conditions cannot be satisfied, numerical simulations demonstrate that the system can step into chaos through a period doubling route with the increase of the amplitude of the modulating term. Regulating specific parameters can effectively suppress the chaos.
Abstract:We study the chaotic dynamics of a periodically modulated Josephson junction with damping. The general solution of the first-order perturbed equation is constructed by using the direct perturbation technique. It is theoretically found that the boundedness conditions of the general solution contain the Melnikov chaotic criterion. When the perturbation conditions cannot be satisfied, numerical simulations demonstrate that the system can step into chaos through a period doubling route with the increase of the amplitude of the modulating term. Regulating specific parameters can effectively suppress the chaos.
[1] Belykh V N, Pedersen N F and Soerensen O H 1977 Phys.Rev. B 16 4853 Belykh V N, Pedersen N F and Soerensen O H 1977 Phys. Rev.B 16 4860 [2] Huberman B A, Crutchfield J A and Packard N H 1980 Appl. Phys. Lett. 37 750 [3] Gubankov V N, Konstantinyan K I, Koshelets V P andOvsyannikov G A 1983 IEEE. Trans. Magn. MAG 19 637 [4] Genchev Z G, Ivanov Z G and Todorov B N 1983 IEEE Trans.Circuits Syst. CAS 30 633 [5] Cirillo M and Pedersen 1982 Phys. Lett. A 90 150 [6] Octavio M 1984 Phys. Rev. B 29 1231 [7] Cicogna G and Fronzoni L 1990 Phys. Rev. A 42 1901 [8] Yao X, Wu J Z and Ting C S 1990 Phys. Rev. B 42 244 [9] Hai W, Xiao Y, Fang J, Huang W and Zhang X 2000 Phys.Lett. A 265 128 [10] Hai W, Zhang X, Huang W and Chong G 2001 Int. J.Bifurcation and Chaos 11 2263 [11] Hai W, Xiao Y, Chong G and Xie Q 2002 Phys. Lett. A 295 220 [12] Yu K, Zou J and Shao B 2001 Chin. Phys. 10 1154 [13] Xuan Y, Li Z, Tao H, Ren Z, Che G, Zhao B and Zhao Z 2001 Chin. Phys. Lett. 18 1254 [14] Zhan Y 2005 Chin. Phys. 14 1044 [15] Zhou T, Yan S, Fang L, Zuo X, Li S, Ji L and Zhao X 2006 Chin. Phys. Lett. 23 1935 [16] Zeng T, Shao B, Chang P and Zou J 2006 Chin. Phys.Lett. 23 2644 [17] Hai W, Lee C, Chong G and Shi L 2002 Phys. Rev. E 66 026202 [18] Fang J, Hai W and Zhang X 2001 Chin. Phys. Lett. 18 334 [19] Fang J 2003 Commun. Theor. Phys. 39 555 [20] Fang J, Hai W, Chong G and Xie Q 2005 Physica A 349 133 [21] Li F, Shu W, Jiang J, Luo H and Ren Z 2007 Eur. Phys.J. D ( DOI: 10.1140/epjd/e2006-00247-3) [22] Li F, Shu W, Luo H and Ren Z Chin. Phys. (accepted)