摘要The mechanism of single-walled carbon nanotubes (SWCNTs) aligning in the direction of external electric field is studied by quantum mechanics calculations. The rotational torque on the carbon nanotubes is proportional to the difference between the longitudinal and transverse polarizabilities and varies with the angle of SWCNTs to the external electric field. The longitudinal polarizability increases with second power of length, while the transverse polarizability increases linearly with length. A zigzag SWCNT has larger longitudinal and transverse polarizabilities than an armchair SWCNT with the same diameter and the discrepancy becomes larger for longer tubes.
Abstract:The mechanism of single-walled carbon nanotubes (SWCNTs) aligning in the direction of external electric field is studied by quantum mechanics calculations. The rotational torque on the carbon nanotubes is proportional to the difference between the longitudinal and transverse polarizabilities and varies with the angle of SWCNTs to the external electric field. The longitudinal polarizability increases with second power of length, while the transverse polarizability increases linearly with length. A zigzag SWCNT has larger longitudinal and transverse polarizabilities than an armchair SWCNT with the same diameter and the discrepancy becomes larger for longer tubes.
MA Shao-Jie;GUO Wan-Lin. Mechanism of Carbon Nanotubes Aligning along Applied Electric Field[J]. 中国物理快报, 2008, 25(1): 270-273.
MA Shao-Jie, GUO Wan-Lin. Mechanism of Carbon Nanotubes Aligning along Applied Electric Field. Chin. Phys. Lett., 2008, 25(1): 270-273.
[1] Dai H 2000 Phys. World 13 43 [2] Fan S, Chapline M G, Franklin N R, Tombler T W, Cassell AM and Dai H 1999 Science 287 512 [3] Kong J, Franklin N R, Zhou C, Chapline G M, Peng S,Kyeongjae D and Dai H 2000 Science 287 622 [4] Zhang Y, Chang A, Cao J, Wang Q, Kim W, Li Y, Morris N,Yenilmez E, Kong J and Dai H 2001 Appl. Phys. Lett. 793155 [5] Ural A, Li Y and Dai H 2002 Appl. Phys. Lett. 81 3464 [6] Joselevich E and Lieber C M 2002 Nano. Lett. 21137 [7] Krupke R, Hennrich F, L\"ohneysen H and Kappes M M 2003 Science 301 344. [8] Chen X Q, Saito T, Yamada H and Matsushige K 2001 Appl. Phys. Lett. 78 3714 [9] Nagahara L A, Amlani I, Lewenstein J and Tsui R K 2002 Appl. Phys. Lett. 80 3826 [10] Chen Z, Yang Y, Wu Z, Luo G, Xie L, Liu Z, Ma S and Guo W2005 J. Phys. Chem. B 109 5473 [11] Fan D L, Zhu F Q, Cammarata R C and Chien C L 2005 Phys. Rev. Lett. 94 247208 [12] Benedict L X, Louie S G and Cohen M L1995 Phys.Rev. B 52 8541 [13] Deval M and Adessi C 2001 Poster in NT01 Workshop(Potsdam, Germany) [14] Jensen L, Schmidt O H and Mikkelsen K V 2000 J.Phys. Chem. B 104 10462 [15] Torrens F 2004 Nanotechnology 15 S259 [16] Jensen L, {\AAstrand P and Mikkelsen K V 2004 J.Phys. Chem. A 108 8795 [17] Brothers E N, Kudin K N, Scuseria G E and Bauschlicher CW 2005 Phys. Rev. B 72 044402 [18] Faassen M, Jensen L, Berger J A and Boeij P L 2004 Chem. Phys. Lett. 395 274 [19] Guo G Y, Chu K C, Wang D and Duan C 2004 Comp.Mater. Sci. 30 269 [20] Kozinsky B and Marzari N 2006 Phys. Rev. Lett. 96 166801 [21] B\"{ottcher C 1973 Theory of ElectricPolarization 2nd edn (Amsterdam: Elsevier) [22] Schmidt M W, Baldridge K K, Boatz J A, Elbert S T, GordonM S, Jensen J J, Koseki S, Matsunaga N, Nguyen K A, Su S, Windus TL, Dupuis M and Montgomery J A 1993 J. Comput. Chem. 141347