Synthesis and Multiferroic Properties of BiFeO3 Nanotubes
WANG Jing1, LI Mei-Ya1,2, LIU Xiao-Lian1, PEI Ling1, LIU Jun1, YU Ben-Fang1, ZHAO Xing-Zhong1,2
1Department of Electronic Science and Technology, School of Physical Science and Technology, Wuhan University, Wuhan 4300722Key Laboratory of Acoustic and Photonic Material and Device of the Ministry of Education, Wuhan University, Wuhan 430072
Synthesis and Multiferroic Properties of BiFeO3 Nanotubes
WANG Jing1, LI Mei-Ya1,2, LIU Xiao-Lian1, PEI Ling1, LIU Jun1, YU Ben-Fang1, ZHAO Xing-Zhong1,2
1Department of Electronic Science and Technology, School of Physical Science and Technology, Wuhan University, Wuhan 4300722Key Laboratory of Acoustic and Photonic Material and Device of the Ministry of Education, Wuhan University, Wuhan 430072
摘要Highly ordered BiFeO3(BFO) nanotubes with about 200nm in diameter and 60μm in length are fabricated by a sol-gel AAO template method. A perovskite-type structure of BFO is confirmed in the nanotubes by transmission electron microscopy and selected area electron diffraction analysis. The coexistence of ferroelectric and ferromagnetic ordering of these BFO nanotubes at room temperature is demonstrated, giving a remnant polarization of 26μC/cm2, a low coercive electric field of 60kV/cm, and a magnetization of 0.18emu/g. In addition, it is found that the leakage behavior of these nanotubes is dominated by the ohmic contact mechanism.
Abstract:Highly ordered BiFeO3(BFO) nanotubes with about 200nm in diameter and 60μm in length are fabricated by a sol-gel AAO template method. A perovskite-type structure of BFO is confirmed in the nanotubes by transmission electron microscopy and selected area electron diffraction analysis. The coexistence of ferroelectric and ferromagnetic ordering of these BFO nanotubes at room temperature is demonstrated, giving a remnant polarization of 26μC/cm2, a low coercive electric field of 60kV/cm, and a magnetization of 0.18emu/g. In addition, it is found that the leakage behavior of these nanotubes is dominated by the ohmic contact mechanism.
[1] Martin L W, Crane S P, Chu Y-H, Holcomb M B, Gajek M,Huijben M, Yang C H, Balke N and Ramesh R 2008 J. Phys.:Condens. Matter. 20 434220 [2] Eerenstein W, Mathur N D and Scott J F 2006 Nature 442 759 [3] Michel C, Moreau J-M, Achenbach G D, Gerson R and James WJ 1969 Solid State Commun. 7 701 [4] Fischer P, Polomska M, Sosnowska I and Szymanksi M 1980 J. Phys. C: Solid. St. Phys. 13 1931 [5] Yu B, Li M, Wang J, Pei L, Guo D and Zhao X 2008 J.Phys. D: Appl. Phys. 41 185401 [6] Wang J et al 2003 Science 299 1719 [7] Zhang M F, Liu J M and Liu Z G 2004 Appl. Phys. A 79 1753 [8] Gao F, Yuan Y, Wang K F, Chen X Y, Chen F and Liu J M 2006 Appl. Phys. Lett. 89 102506 [9] Wei J and Xue D 2008 Mater. Res. Bull. 43 3368 [10] He Y, Zhang M, Zhang J Y, Wang Y and Yu Z P 2009 Chin. Phys. Lett. 26 027302 [11] Zeng H et al 2004 Science 303 661 [12] Kim J et al 2008 Nano. Lett. 8 1813 [13] Singh S and Krupanidhi S B 2007 Phys. Lett. A 367 356 [14] Park T-J, Mao Y and Wong S S 2004 Chem. Commun. 23 2708 [15] Zhang X Y, Lai C W, Zhao X, Wang D Y and Dai J Y 2005 Appl. Phys. Lett. 87 143102 [16] Wei J, Xue D and Xu Y 2008 Scripta Mater. 5845 [17] Martin C R 1994 Science 266 1961 [18] Liu Z, Liu H, Du G., Zhang J and Yao K 2006 Appl.Phys. Lett. 100 044110 [19] Simmons J G 1971 J. Phys. D: Appl. Phys. 4613 [20] Naganuma H, Miura J and Okamura S 2009 J.Electroceram. 22 203 [21] Manoj K, Yadav K L and Varma G D 2008 Mater. Lett. 62 1159 [22] Gonzalez A H M, Sim\~{oes A Z, Cavalcante L S, Longo E,Varela J A and Riccardi C S 2007 Appl. Phys. Lett. 90052906 [23] Wang D H, Yan L, Ong C K and Du Y W 2006 Appl. Phys.Lett. 89 182905 [24] Huang F, Lu X, Lin W, Wu X, Kan Y and Zhu J 2006 Appl. Phys. Lett. 89 242914 [25] Sosnowska, Peterlin-Neumaier T and Steichele E 1982 J. Phys. C: Solid State Phys. 15 4835 [26] Yu B , Li M, Hu Z, Pei L, Guo D, Zhao X and Dong S 2008 Appl. Phys. Lett. 93 182909