摘要Scroll waves exist ubiquitously in three-dimensional excitable media. The rotation centre can be regarded as a topological object called the vortex filament. In three-dimensional space, the vortex filaments usually form closed loops, and can be even linked and knotted. We give a rigorous topological description of knotted vortex filaments. By using the Ф-mapping topological current theory, we rewrite the topological current form of the charge density of vortex filaments, and using this topological current we reveal that the Hopf invariant of vortex filaments is just the sum of the linking and self-linking numbers of the knotted vortex filaments. We think that the precise expression of the Hopf invariant may imply a new topological constraint on knotted vortex filaments.
Abstract:Scroll waves exist ubiquitously in three-dimensional excitable media. The rotation centre can be regarded as a topological object called the vortex filament. In three-dimensional space, the vortex filaments usually form closed loops, and can be even linked and knotted. We give a rigorous topological description of knotted vortex filaments. By using the Ф-mapping topological current theory, we rewrite the topological current form of the charge density of vortex filaments, and using this topological current we reveal that the Hopf invariant of vortex filaments is just the sum of the linking and self-linking numbers of the knotted vortex filaments. We think that the precise expression of the Hopf invariant may imply a new topological constraint on knotted vortex filaments.
[1]1995 Chemical Waves and Patterns ed Kapral R andShowalter K (Dordrecht: Kluwer) [2] Jakubith S, Rotermund H H, Engel W, von Oertzen A and ErtlG 1990 Phys. Rev. Lett. 65 3013 [3] Tornkvist O and Schroder E 1997 Phys. Rev.Lett. 78 1908 [4] Gray R A 1996 Int. J. Bifur. Chaos Appl. Sci. Eng. 6 415 [5] Winfree A T 1972 Science 175 634 [6] Davidenko J M, Pertsov A V, Salomonsz R, Baxter W andJalife J 1992 Nature 355 349 [7] Wang C, Wang S, Zhang C X and Ouyang Q 2005 Phys.Rev. E 72 066207 Wu N J, Zhang H, Ying H P, Cao Z J and Hu G 2006 Phys.Rev. E 73 060901(R) [8] Vinson M, Mironov S, Mulvey S and Pertsov A 1997 Nature 386 477 [9] Alonso S, Sagues F and Mikhailov A S 2003 Science 299 1722 [10] Zhang H, Cao Z, Wu N J, Ying H P and Hu G 2005 Phys.Rev. Lett. 94 18830 [11] Pertsov A M, Aliev R R and Krinsky V I 1990 Nature 345 419 [12] Jahnke W, Henze C and Winfree A T 1988 Nature 336 662 [13] Tyson J J and Strogatz S H 1991 Int. J. Bifur.Chaos 1 723 [14] Henze C and Winfree A T 1991 Int. J. Bifur. Chaos 1 891 [15] Winfree A T 1994 Nature 371 233 [16] Zhang H, Hu B, Li B W and Duan Y S 2007 Chin. Phys.Lett. 24 1618 [17] Pertsov A M, Wellner M, Vinson M and Jalife J 2000 Phys. Rev. Lett. 84 2738 [18] Sutcliffe P M and Winfree A T 2003 Phys. Rev. E 68 016218 [19] Winfree A T and Strogatz S H 1984 Nature 311611 [20] Malevanets A and Kapral R 1996 Phys. Rev. Lett. 77 767 [21] Winfree A T 1995 Physica D 84 126 [22] Ren J R, Zhu T and Duan Y S 2008 Commun. Theor.Phys. (accepted) [23] Ren J R, Li R and Duan Y S 2007 J. Math. Phys. 48 073502 [24] Winfree A T and Strogatz S H 1983 Physica D 835 [25] Fu L B, Duan Y S and Zhang H 2000 Phys. Rev. D 61 045004 [26] Duan Y S, Liu X and Fu L B 2003 Phys. Rev. D 67 08502 [27] Goursat E 1904 A Course in Mathematical Analysistranslated by Hedrick E R (New York: Dover) vol 1 [28] Schouten J A 1951 Tensor Analysis for Physicists(Oxford: Clarendon) [29] Rolfsen D 1976 Knots and Links (Berkeley, CA:Perish) [30] Pohl W 1968 J. Math. Mech. 17 975 Calini A and Ivey T dg-ga/9608001 [31] Polyakov A M 1988 Mod. Phys. Lett. A 3 325