Minimal Braid in Applied Symbolic Dynamics
ZHANG Cheng, ZHANG Ya-Gang, PENG Shou-Li
Center for Nonlinear Complex Systems, Department of Physics,
Yunnan University, Kunming 650091
Minimal Braid in Applied Symbolic Dynamics
ZHANG Cheng;ZHANG Ya-Gang;PENG Shou-Li
Center for Nonlinear Complex Systems, Department of Physics,
Yunnan University, Kunming 650091
关键词 :
05.45.-a ,
02.10.Kn
Abstract : Based on the minimal braid assumption, three-dimensional periodic flows of a dynamical system are reconstructed in the case of unimodal map, and their topological structures are compared with those of the periodic orbits of the Rössler system in phase space through the numerical experiment. The numerical results justify the validity of the minimal braid assumption which provides a suspension from one-dimensional symbolic dynamics in the Poincaré section to the knots of three-dimensional periodic flows.
Key words :
05.45.-a
02.10.Kn
出版日期: 2003-09-01
[1]
CHEN Yue-Hua;WU Zhi-Yuan;YANG Jun-Zhong. Noise-Mediated Generalized Synchronization [J]. 中国物理快报, 2007, 24(1): 46-49.
[2]
ZHOU Ya-Tong;ZHANG Tai-Yi;SUN Jian-Cheng. Multi-Scale Gaussian Processes: a Novel Model for Chaotic Time Series Prediction [J]. 中国物理快报, 2007, 24(1): 42-45.
[3]
WU Ning-Jie;LI Bing-Wei;YING He-Ping. Effects of Periodic Forcing Amplitude on the Spiral Wave Resonance Drift [J]. 中国物理快报, 2006, 23(8): 2030-2033.
[4]
ZHANG Jian-Guo;YAN Jia-Ren;LIU Zi-Ran;WANG Li. Evolution of Weighted Networks by Duplication--Divergence Mechanism [J]. 中国物理快报, 2006, 23(8): 2330-2333.
[5]
ZHOU Zhen;ZHAO Hong. Improvement of the Hopfield Neural Network by MC-Adaptation Rule [J]. 中国物理快报, 2006, 23(6): 1402-1405.
[6]
ZHANG Shan;YANG Shi-Ping;LIU Hu. Targeting of Kolmogorov--Arnold--Moser Orbits by the Bailout Embedding Method in Two Coupled Standard Maps [J]. 中国物理快报, 2006, 23(5): 1114-1117.
[7]
M. S. Baptista;C. Zhou;J. Kurths. Information Transmission in Phase Synchronous Chaotic Arrays [J]. 中国物理快报, 2006, 23(3): 560-563.
[8]
ZHANG Jia-Shu. Robust Blind Adaptive Channel Equalization in Chaotic Communication Systems [J]. 中国物理快报, 2006, 23(12): 3187-3189.
[9]
WANG Bing;TANG Huan-Wen;XIU Zhi-Long;GUO Chong-Hui. Optimizing Synchronizability of Scale-Free Networks in Geographical Space [J]. 中国物理快报, 2006, 23(11): 3123-3126.
[10]
YUAN Wu-Jie;LUO Xiao-Shu;WANG Bing-Hong;WANG Wen-Xu;FANG Jin-Qing;JIANG Pin-Qun. Excitation Properties of the Biological Neurons with Side-Inhibition Mechanism in Small-World Networks [J]. 中国物理快报, 2006, 23(11): 3115-3118.
[11]
BU Shou-Liang;ZHANG You-Wei;WANG Bing-Hong;. Synchronizing Complex Networks by an Adaptive Adjustment Mechanism [J]. 中国物理快报, 2006, 23(11): 2909-2912.
[12]
WANG Mao-Sheng;HOU Zhong-Huai;XIN Hou-Wen. Best Spatiotemporal Performance Sustained by Optimal Number of Random Shortcuts on Complex Networks [J]. 中国物理快报, 2006, 23(10): 2666-2669.
[13]
ZDRAVKOVIC S.;SATARIC M. V.. Influence of Morse Potential on DNA Dynamics [J]. 中国物理快报, 2006, 23(1): 65-68.
[14]
WANG Hai-Xia;LU Qi-Shao;WANG Qing-Yun. Complete Synchronization in Coupled Chaotic HR Neurons with Symmetric Coupling Schemes [J]. 中国物理快报, 2005, 22(9): 2173-2175.
[15]
GAO Wen;PENG Shou-Li. Universal Form of Renormalizable Knots in Symbolic Dynamics [J]. 中国物理快报, 2005, 22(8): 1848-1851.