Superconductivity in Mg-Doped Layered Intermetallic Compound NbB2
LIU Guang-Tong1,2, JIN Hao2, LI Zheng1, GENG Hong-Xia1, CHE Guang-Can1, JIN Duo1, SUN Lian-Feng2 XIE Si-Shen1, LUO Jian-Lin1
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 1000802National Center for Nanoscience and Technology, Beijing 100080
Superconductivity in Mg-Doped Layered Intermetallic Compound NbB2
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 1000802National Center for Nanoscience and Technology, Beijing 100080
摘要We have performed low temperature resistivity ρ(T) and specific heat C(T) measurements on a superconducting polycrystalline Nb0.75Mg0.25B2 sample. The results indicate that the superconducting transition temperature is ~4.6K. The zero temperature upper critical field determined from the resistivity and specific heat is 3123Oe. The electronic coefficient of specific heat γn=4.51mJmol-1K2 and the Debye temperature θD=419K are obtained by fitting the zero-field specific heat data in the normal state. At low temperatures, the electronic specific heat in the superconducting state follows CesθnTc=2.84exp(1.21Tc/T). This indicates that the superconducting pairing in Nb0.75Mg0.25B2 has s-wave symmetry.
Abstract:We have performed low temperature resistivity ρ(T) and specific heat C(T) measurements on a superconducting polycrystalline Nb0.75Mg0.25B2 sample. The results indicate that the superconducting transition temperature is ~4.6K. The zero temperature upper critical field determined from the resistivity and specific heat is 3123Oe. The electronic coefficient of specific heat γn=4.51mJmol-1K2 and the Debye temperature θD=419K are obtained by fitting the zero-field specific heat data in the normal state. At low temperatures, the electronic specific heat in the superconducting state follows CesθnTc=2.84exp(1.21Tc/T). This indicates that the superconducting pairing in Nb0.75Mg0.25B2 has s-wave symmetry.
[1] Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y andAkimitsu J 2001 Nature 410 63 [2]Yamamoto A, Takao C, Masui T, Izumi M and Tajima S 2002 Physica C 383 197 [3] R. Kiessling 1951 J. Electrochem. Soc. 98 166 [4] Brewer L, Sawyer D L, Templeton D H and Dauben C H 1951 J. Am. Ceram. Soc. 34 173 [5] Juretschke H J and Steinitz R 1958 J. Phys. Chem.Solids 4 118 [6] Gasparov V A, Sidorov N S, Zver'kova I L and Kulakov M P2001 JEPT Lett. 73 532 [7] Cooper A S, Corenzwit E, Longinotti L D, Matthias B T andZachariasen W H 1970 Proc. Nat. Acad. Sci. 67 313 [8] Kaczorowski D, Zaleski A J, Zogal O J and Klamut J 2001 cond-mat/0103571 [9] Leyarovska L and Leyarovski E 1979 Less Com. Met. 67 249 [10] Kotegawa H, Ishida K, Kitaoka Y, Muranaka T, Nakagawa N,Takagiwa H and Akimitsu J 2002 Physica C 378-381 25 [11] Schirber J E, Overmyer D L, Morosin B, Venturini E L,Baughman R, Emin D, Klesnar H and Aselage T 1992 Phys. Rev. B 45 10787 [12] Hulm J K and Mathias B T 1951 Phys. Rev. B 82273 [13] Zeigler W A and Young R 1953 Phys. Rev. B 94115 [14] Xiao R J, Li K Q, Yang H X, Che G C, Zhang H R, Ma C,Zhao Z X and Li J Q 2006 Phys. Rev. B 73 224516 [15] Escamilla R, Lovera O, Akachi T, Dur{\'{an A, FalconiR, Morales F and Escudero R 2004 J. Phys.: Condens. Matter 16 5979 [16] An J M and Pickett W E 2001 Phys. Rev. Lett. 86 4366 [17] Kortus J, Mazin I I, Belashchenko K D, Antropov V P andBoyer L L 2001 Phys. Rev. Lett. 86 4656 [18] Kong Y, Dolgov O V, Jepsen O and Andersen O K 2001 Phys. Rev. B 64 020501 [19] Bohnen K -P, Heid R and Renker B 2001 Phys. Rev.Lett. 86 5771 [20] Yildirim T, G\"{ulseren O, Lynn J W, Brown C M, Udovic TJ, Huang Q, Rogado N, Regan K A, Hayward M A, Slusky J S, He T, HaasM K, Khalifah P, Inumaru K and Cava R J 2001 Phys. Rev. Lett. 87 037001 [21] Choi H J, Roundy D, Sun H, Cohen M L and Louie S G 2002 Phys. Rev. B 66 020513 [22] Shukla A, Calandra M, Astuto M d', Lazzeri M, Mauri F,Bellin C, Krisch M, Karpinski J, Kazakov S M, Jun J, Daghero D andParlinski K 2003 Phys. Rev. Lett. 90 095506 [23] Singh P P 2003 Phys. Rev. B 67 132511 [24] Kang W N, Kim K H P, Kim H J, Choi E M, Park M S, Kim MS, Du Z L, Jung C U, Kim K H, Lee S I and Mun M O 2002 J.Korean Phys. Soc. 40 949 [25] Jin R, Paranthaman M, Zhai H Y, Christen H M, Christen DK and Mandrus D 2001 Phys. Rev. B 64 220506 [26] Moler K A, Baar D J, Urbach J S, Liang R, Hardy W N andKapitulnik A 1994 Phys. Rev. Lett. 73 2744 [27] Revaz B, Genoud J -Y, Junod A, Neumaier K, Erb A and EWalker 1998 Phys. Rev. Lett. 80 3364 [28] Yang H D, Lin J -Y, Li H H, Hsu F H, Liu C J, Li S-C, YuR-C and Jin C-Q 2001 Phys. Rev. Lett. 87 167003 [29] Liu G T, Luo J L, Li Z, Guo Y Q, Wang N L, Jin D andXiang T 2006 Phys. Rev. B 74 012504 [30] Luo J L, Loram J W, Cooper J R and Tallon J L 2000 Physica B 284 1045 [31] Ketterson J B and Song S N 1999 Superconductivity(Cambridge: Cambridge University Press) part I p 215 [32] Geng H X, Che G C, Huang W W, Jia S L, Chen H and Zhao ZX 2007 Supercond. Sci. Technol. 20 452 [33] Tinkham M 1996 Introduction to Superconductivity2nd edn (New York: McGraw-Hill) chap 4 p 118 [34] Werthamer N R, Helfand E and Hohenberg P C 1966 Phys. Rev. 147 295 [35] Finnemore D K, Ostenson J E, Bud'ko S L, Lapertot G andP. C. Canfield 2001 Phys. Rev. Lett. 86 2420 [36] Chou F C, Cho J H, Lee P A, Abel E T, Matan K and Lee Y S2004 Phys. Rev. Lett. 92 157004 [37] Morosan E, Zandbergen H W, Dennis B S, Bos J W G, OnoseY, Klimczuk T, Ramirez A P, Ong N P and Cava R J 2006 Nat.Phys. 2 544 [38] Wang Y, Plackowski T and Junod A 2001 Physica C 355 179 [39] McMillan W L 1968 Phys. Rev. 167 331 [40] Joseph P J T and Singh P P 2003 Physica C 391125 [41] Shein I R, Medvedeva N I and Ivanovski A L 2003 Phys. Solid State 45 1617 [42] Lin J Y, Ho P L, Huang H L, Lin P H, Zhang Y L, Yu R C,Jin C Q and Yang H D 2001 Phys. Rev. B 67 052501 [43]Caroli C, Gennes P G de and Matricon J 1964 Phys.Lett. 9 307