Energy Gap and Electron Effective Mass in Chlorine Halide Superconductor at High Pressure
R. Szczęśniak1, D. Szczęśniak2**
1Institute of Physics, Czestochowa University of Technology, Al. Armii Krajowej 19, Czestochowa 42-200, Poland 2Institute of Physics, Jan Dlugosz University in Czestochowa, Al. Armii Krajowej 13/15, Czestochowa 42-200, Poland
Dependences of the order parameter (Δ) and the electron effective mass (me?) on the temperature for the chlorine halide superconductor are determined in the present work. The high values of the pressure (p1=320 GPa and p2=360 GPa), for which the critical temperature is equal to [TC]p1=30.6 K and [TC]p2=41.5 K, are taken into consideration. It is found that the dependence of the order parameter on the temperature deviates from the predictions of the classical Bardeen–Cooper–Schrieffer theory, due to the existence of the significant strong-coupling and retardation effects. The values of the order parameter, for the temperature close to zero Kelvin, are equal to [Δ(0)]p1=4.89 meV and [Δ(0)]p2=6.82 meV. The obtained results allowed next to calculate the dimensionless ratio RΔ≡2Δ(0)/kBTC, which is equal to 3.71 and 3.81 in respect to p1 and p2. In the last step, it is proven that the electron effective mass is weakly dependent on the temperature in the area of the existence of the superconducting state and reaches its maximum at the critical temperature. For the considered values of the pressure, we obtain [me?]p1max=1.69me and [me?]p2max=1.78me, where the symbol me denotes the electron band mass.
. [J]. 中国物理快报, 2014, 31(11): 117401-117401.
R. Szczęśniak, D. Szczęśniak. Energy Gap and Electron Effective Mass in Chlorine Halide Superconductor at High Pressure. Chin. Phys. Lett., 2014, 31(11): 117401-117401.
[1] Duan D, Tian F, He Z, Meng X, Wang L, Chen C, Zhao X, Liu B and Cui T 2010 J. Chem. Phys.133 074509
[2] Bardeen J, Cooper L N and Schrieffer J R 1957 Phys. Rev.108 1175
[3] Eliashberg G M 1960 Sov. Phys. JETP11 696
[4] Szcz? ?niak R 2006 Acta Phys. Pol. A 109 179
[5] Marsiglio F, Schossmann M and Carbotte J P 1988 Phys. Rev. B 37 4965
[6] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.: Condens. Matter14 2717
[7] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Corso A D, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P and Wentzcovitch R M 2009 J. Phys.: Condens. Matter21 395502
[8] Carbotte J P 1990 Rev. Mod. Phys.62 1027
[9] Carbotte J P and Marsiglio F 2003 The Physics of Superconductors (Berlin: Springer) vol 1 p 223
[10] Szcz? ?niak R and Drzazga E A 2013 Solid State Sci.19 167
[11] Szcz? ?niak R and Durajski A P 2013 Solid State Sci.25 45
[12] Szcz? ?niak R and Durajski A P 2014 Supercond. Sci. Technol.27 015003
[13] Varelogiannis G 1997 Z. Phys. B 104 411