Perturbative Influence on the Shockwave of Burgers Equation
TANG Yi1 , YAN Jia-Ren2 , ZHANG Kai-Wang1
1 Department of Physics, Xiangtan University, Xiangtan 411105
1 Department of Physics, Hunan Normal University, Changsha 410081
Perturbative Influence on the Shockwave of Burgers Equation
TANG Yi1 ;YAN Jia-Ren2 ;ZHANG Kai-Wang1
1 Department of Physics, Xiangtan University, Xiangtan 411105
1 Department of Physics, Hunan Normal University, Changsha 410081
关键词 :
03.40.Kf
Abstract : From the point of view of evolution equations with soliton solutions, we present a general way for the study of the shockwave of one-dimensional Burgers equation under the action of perturbations. Apart from the damping case which needs a somewhat special treatment, we formulate the effects induced by other general perturbations unifyingly.
Key words :
03.40.Kf
出版日期: 2000-03-01
引用本文:
TANG Yi;YAN Jia-Ren;ZHANG Kai-Wang. Perturbative Influence on the Shockwave of Burgers Equation[J]. 中国物理快报, 2000, 17(3): 157-158.
TANG Yi, YAN Jia-Ren, ZHANG Kai-Wang. Perturbative Influence on the Shockwave of Burgers Equation. Chin. Phys. Lett., 2000, 17(3): 157-158.
链接本文:
https://cpl.iphy.ac.cn/CN/
或
https://cpl.iphy.ac.cn/CN/Y2000/V17/I3/157
[1]
LIN Ji;CHENG Xue-Ping;YE Li-Jun. Soliton and Periodic Travelling Wave Solutions for Quadratic Nonlinear Media [J]. 中国物理快报, 2006, 23(1): 147-150.
[2]
XU You-Sheng;ZHONG Yi-Jun;HUANG Guo-Xiang. Lattice Boltzmann Method for Diffusion-Reaction-Transport Processes in Heterogeneous Porous Media [J]. 中国物理快报, 2004, 21(7): 1298-1301.
[3]
HE Kai-Fen. Hopf Bifurcation in a Nonlinear Wave System [J]. 中国物理快报, 2004, 21(3): 439-442.
[4]
XU You-Sheng;;LIU Yang;HUANG Guo-Xiang. Using Digital Imaging to Characterize Threshold Dynamic Parameters in Porous Media Based on Lattice Boltzmann Method [J]. 中国物理快报, 2004, 21(12): 2454-2458.
[5]
QU Chang-Zheng;YAO Ruo-Xia;LI Zhi-Bin. Two-Component Wadati--Konno--Ichikawa Equation and Its Symmetry Reductions [J]. 中国物理快报, 2004, 21(11): 2077-2080.
[6]
ZHENG Chun-Long;;ZHANG Jie-Fang;HUANG Wen-Hua;CHEN Li-Qun. Peakon and Foldon Excitations In a (2+1)-Dimensional Breaking Soliton System [J]. 中国物理快报, 2003, 20(6): 783-786.
[7]
ZHANG Jie-Fang;ZHENG Chun-Long;MENG Jian-Ping;FANG Jian-Ping. Chaotic Dynamical Behaviour in Soliton Solutions for a New (2+1)-Dimensional Long Dispersive Wave System [J]. 中国物理快报, 2003, 20(4): 448-451.
[8]
ZHENG Chun-Long;;ZHANG Jie-Fang;SHENG Zheng-Mao. Chaos and Fractals in a (2+1)-Dimensional Soliton System [J]. 中国物理快报, 2003, 20(3): 331-334.
[9]
LIU Yin-Ping;LI Zhi-Bin. An Automated Algebraic Method for Finding a Series of Exact Travelling Wave Solutions of Nonlinear Evolution Equations [J]. 中国物理快报, 2003, 20(3): 317-320.
[10]
WANG Feng-Jiao;TANG Yi. Small Amplitude Solitons in the Higher Order Nonlinear Schrödinger Equation in an Optical Fibre [J]. 中国物理快报, 2003, 20(10): 1770-1772.
[11]
DUAN Wen-Shan;HONG Xue-Ren;SHI Yu-Ren;LU Ke-Pu;SUN Jian-An. Weakly Two-Dimensional Solitary Waves on Coupled Nonlinear
Transmission Lines [J]. 中国物理快报, 2002, 19(9): 1231-1233.
[12]
LIU Yin-Ping;LI Zhi-Bin. An Automated Jacobi Elliptic Function Method for Finding Periodic Wave Solutions to Nonlinear Evolution Equations [J]. 中国物理快报, 2002, 19(9): 1228-1230.
[13]
TANG Xiao-Yan;HU Heng-Chun;. Characteristic Manifold and Painlevé Integrability: Fifth-Order Schwarzian Korteweg-de Type Equation [J]. 中国物理快报, 2002, 19(9): 1225-1227.
[14]
ZHANG Hai-Yun; HE Kai-Fen. Charged Particle Motion in Temporal Chaotic and Spatiotemporal
Chaotic Fields [J]. 中国物理快报, 2002, 19(4): 481-484.
[15]
DUAN Wen-Shan. Stability of Dust Acoustic Waves in Weakly Two-Dimensional Dust Plasma with Vortex-Like Ion Distribution
[J]. 中国物理快报, 2002, 19(4): 452-455.