A Time-Dependent Random State Approach for Large-Scale Density Functional Calculations
Weiqing Zhou and Shengjun Yuan*
Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China
Abstract :We develop a self-consistent first-principle method based on the density functional theory. Physical quantities such as the density of states, Fermi energy and electron density are obtained using a time-dependent random state method without diagonalization. The numerical error for calculating either global or local variables always scales as $1/\sqrt{SN_{\rm e}}$, where $N_{\rm e}$ is the number of electrons and $S$ is the number of random states, leading to a sublinear computational cost with the system size. In the limit of large systems, one random state could be enough to achieve reasonable accuracy. The accuracy and scaling properties of using the method are derived analytically and verified numerically in different condensed matter systems. Our time-dependent random state approach provides a powerful strategy for large-scale density functional calculations.
收稿日期: 2022-12-17
Express Letter
出版日期: 2023-02-01
:
31.15.E-
71.15.-m
(Methods of electronic structure calculations)
71.15.Mb
(Density functional theory, local density approximation, gradient and other corrections)
[1] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
[2] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[3] Chelikowsky J R, Jing X, Wu K, and Saad Y 1996 Phys. Rev. B 53 12071
[4] Edelman A and Smith S T 1996 BIT Numer. Math 36 494
[5] Teter M P, Payne M C, and Allan D C 1989 Phys. Rev. B 40 12255
[6] Payne M C, Teter M P, Allan D C, Arias T A, and Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045
[7] Car R and Parrinello M 1985 Phys. Rev. Lett. 55 2471
[8] Goedecker S 1999 Rev. Mod. Phys. 71 1085
[9] Baer R, Neuhauser D, and Rabani E 2013 Phys. Rev. Lett. 111 106402
[10] Jay L O, Kim H, Saad Y, and Chelikowsky J R 1999 Comput. Phys. Commun. 118 21
[11] Yang W T 1991 Phys. Rev. Lett. 66 1438
[12] Baroni S and Giannozzi P 1992 EPL (Europhys. Lett.) 17 547
[13] Li X P, Nunes R W, and Vanderbilt D 1993 Phys. Rev. B 47 10891
[14] Sánchez-Portal D, Ordejon P, Artacho E, and Soler J M 1997 Int. J. Quantum Chem. 65 453
[15] Mohr S, Ratcliff L E, Genovese L, Caliste D, Boulanger P, Goedecker S, and Deutsch T 2015 Phys. Chem. Chem. Phys. 17 31360
[16] Goringe C M, Hernández E, Gillan M J, and Bush I J 1997 Comput. Phys. Commun. 102 1
[17] Hernández E, Gillan M J, and Goringe C M 1996 Phys. Rev. B 53 7147
[18] Hine N D M, Haynes P D, Mostofi A A, Skylaris C K, and Payne M C 2009 Comput. Phys. Commun. 180 1041
[19] VandeVondele J, Krack M, Mohamed F, Parrinello M, Chassaing T, and Hutter J 2005 Comput. Phys. Commun. 167 103
[20] Ghosh S and Suryanarayana P 2017 Comput. Phys. Commun. 216 109
[21] Soler J M, Artacho E, Gale J D, Garcı́a A, Junquera J, Ordejón P, and Sánchez-Portal D 2002 J. Phys.: Condens. Matter 14 2745
[22] Michaud-Rioux V, Zhang L, and Guo H 2016 J. Comput. Phys. 307 593
[23] Wesolowski T A and Wang Y A 2013 Recent Progress in Orbital-Free Density Functional Theory (Singapore: World Scientific)
[24] Lignères V L and Carter E A 2005 An introduction to Orbital-Free Density Functional Theory (Berlin: Springer) p 137
[25] Zhou B J, Ligneres V L, and Carter E A 2005 J. Chem. Phys. 122 044103
[26] Wang Y A and Carter E A 2002 Orbital-Free Kinetic-Energy Density Functional Theory (Berlin: Springer) p 117
[27] Chen M, Baer R, Neuhauser D, and Rabani E 2019 J. Chem. Phys. 150 034106
[28] Chen M, Baer R, Neuhauser D, and Rabani E 2019 J. Chem. Phys. 151 114116
[29] Chen M, Baer R, Neuhauser D, and Rabani E 2021 J. Chem. Phys. 154 204108
[30] White A J and Collins L A 2020 Phys. Rev. Lett. 125 055002
[31] Yuan S J, De Raedt H, and Katsnelson M I 2010 Phys. Rev. B 82 115448
[32] Yuan S J, Roldán R, and Katsnelson M I 2011 Phys. Rev. B 84 035439
[33] Logemann R, Reijnders K J A, Tudorovskiy T, Katsnelson M I, and Yuan S 2015 Phys. Rev. B 91 045420
[34] Hams A and De Raedt H 2000 Phys. Rev. E 62 4365
[35] Chelikowsky J R, Troullier N, and Saad Y 1994 Phys. Rev. Lett. 72 1240
[36] Chelikowsky J R, Troullier N, Wu K, and Saad Y 1994 Phys. Rev. B 50 11355
[37] Vosko S H, Wilk L, and Nusair M 1980 Can. J. Phys. 58 1200
[38] Kleinman L and Bylander D M 1982 Phys. Rev. Lett. 48 1425
[39] Jin F P, Willsch D, Willsch M, Lagemann H, Michielsen K, and De Raedt H 2021 J. Phys. Soc. Jpn. 90 012001
[40] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[41] Pulay P 1982 J. Comput. Chem. 3 556
[42] Yuan S J, Rösner M, Schulz A, Wehling T O, and Katsnelson M I 2015 Phys. Rev. Lett. 114 047403
[43] Yuan S J, De Raedt H, and Katsnelson M I 2010 Phys. Rev. B 82 235409
[44] Yuan S J, Wehling T O, Lichtenstein A I, and Katsnelson M I 2012 Phys. Rev. Lett. 109 156601
[45] Shi H, Zhan Z, Qi Z et al. 2020 Nat. Commun. 11 1
[46] Li Y H, Zhan Z, Kuang X H, Li Y G, and Yuan S J 2023 Comput. Phys. Commun. 285 108632
[47] Shao X C, Xu Q, Wang S, Lv J, Wang Y C, and Ma Y M 2018 Comput. Phys. Commun. 233 78
[48] Ho G S, Lignères V L, and Carter E A 2008 Comput. Phys. Commun. 179 839
[49] Golub P and Manzhos S 2020 Comput. Phys. Commun. 256 107365
[50] Arnon E, Rabani E, Neuhauser D, and Baer R 2017 J. Chem. Phys. 146 224111
[1]
. [J]. 中国物理快报, 2019, 36(9): 97101-.
[2]
. [J]. 中国物理快报, 2018, 35(10): 103101-.
[3]
. [J]. 中国物理快报, 2018, 35(10): 103601-.
[4]
. [J]. 中国物理快报, 2015, 32(07): 73101-073101.
[5]
. [J]. 中国物理快报, 2014, 31(06): 63101-063101.
[6]
. [J]. 中国物理快报, 2013, 30(7): 77402-077402.
[7]
. [J]. Chin. Phys. Lett., 2013, 30(3): 38801-038801.
[8]
WANG Zhi-Ping ZHANG Feng-Shou, ZHU Yun, XIE Guan-Hao. Angle-Dependent Irradiation of C4 in Femtosecond Laser Pulses [J]. 中国物理快报, 2012, 29(7): 73101-073101.
[9]
SHI Yu;SUN Qing-Qing;DONG Lin;LIU Han;DING Shi-Jin;ZHANG Wei. Atomic Layer Deposition of Al2 O3 on H-Passivated GeSi: Initial Surface Reaction Pathways with H/GeSi(100)-2×1 [J]. 中国物理快报, 2009, 26(5): 53101-053101.