Propagation Characteristics of Exponential-Cosine Gaussian Vortex Beams
Xin Tong and Daomu Zhao*
Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
Abstract :We propose a controllable exponential-Cosine Gaussian vortex (ECGV) beam, which can evolve into the different beam profiles with three parameters: distance modulation factor (DMF), split modulation factor (SMF) and rotation modulation factor (RMF). When SMF is 0, the ECGV beam appears as a perfect single-ring vortex beam and the ring radius can be adjusted by the DMF. We deduce from mathematics and give the reason for the single-ring characteristics. When SMF is not 0, the beam splits symmetrically. DMF, SMF and RMF control the number, distance and rotation angle of the split, respectively. Our experiments verify the correctness of the theory.
收稿日期: 2021-03-24
出版日期: 2021-08-02
:
42.25.-p
(Wave optics)
41.85.Ew
(Particle beam profile, beam intensity)
41.85.Ct
(Particle beam shaping, beam splitting)
42.25.Bs
(Wave propagation, transmission and absorption)
[1] Nye J F and Berry M V 1971 Proc. R. Soc. A 336 165
[2] Coullet P, Gil L, and Rocca F 1989 Opt. Commun. 73 403
[3] Allen L, Beijersbergen M, Spreeuw R, and Woerdman J 1992 Phys. Rev. A 45 8185
[4] Allen L and Padgett M J 2000 Opt. Commun. 184 67
[5] Beijersbergen M W, Allen L, and Woerdman J P 1993 Opt. Commun. 96 123
[6] Turnbull G A, Robertson D A, Smith G M, Allen L, and Padgett M J 1996 Opt. Commun. 127 183
[7] Zhou G, Wang F, Chen R, and Li X 2020 Opt. Express 28 28518
[8] Fan X, Ji X, Wang H, Deng Y, and Zhang H 2021 J. Opt. Soc. Am. A 38 168
[9] Zhou G, Wang F, and Feng S 2020 Opt. Express 28 19683
[10] Ge Z, Zhou Z, Li Y, Yang C, Liu S, and Shi B 2021 Opt. Lett. 46 158
[11] Seshadri S R 2002 Opt. Lett. 27 998
[12] April A 2011 J. Opt. Soc. Am. A 28 2100
[13] Bagini V 1996 J. Mod. Opt. 43 1155
[14] Jordan R H and Hall D G 1994 Opt. Lett. 19 427
[15] Greene P L and Hall D G 1996 J. Opt. Soc. Am. A 13 962
[16] Kuga T, Torii Y, Shiokawa N, Hirano T, Shimizu Y, and Sasada H 1997 Phys. Rev. Lett. 78 4713
[17] Yan M, Yin J, and Zhu Y 2000 J. Opt. Soc. Am. B 17 1817
[18] Mei Z and Zhao D 2005 J. Opt. Soc. Am. A 22 1898
[19] Terriza G M, Wright E M, and Torner L 2001 Opt. Lett. 26 163
[20] Alexander T J, Sukhorukov A A, and Kivshar Y S 2004 Phys. Rev. Lett. 93 63901
[21] Basistiy I V, Pasko V A, Slyusar V V, Soskin M S, and Vasnetsov M V 2004 J. Opt. A 6 S166
[22] Götte J B, Holleran K O, Preece D, Flossmann F, and Padgett M J 2008 Opt. Express 16 993
[23] Wen J, Wang L, Yang X, Zhang J, and Zhu S 2019 Opt. Express 27 5893
[24] Hosseini S M, Akhlaghi E A, and Saber A 2020 Opt. Lett. 45 3478
[25] Alonzo C A, Rodrigo P J, and Glückstad J 2005 Opt. Express 13 1749
[26] Hermosa N, Guzmán C R, and Torres J P 2013 Opt. Lett. 38 383
[27] Li P, Liu S, Peng T, Xie G, and Zhao J 2014 Opt. Express 22 7598
[28] Lao G, Zhang Z, and Zhao D 2016 Opt. Express 24 18082
[29] Shen D, Wang K, and Zhao D 2019 Opt. Express 27 24642
[30] Zhong J, Qi S, Liu S, Li P, and Zhao J 2019 Opt. Lett. 44 3849
[31] Zhang Y, Li P, Liu S, and Zhao J 2016 Opt. Express 24 28409
[32] Guo X, Li P, Zhong J, and Zhao J 2020 Laser & Photon. Rev. 14 1900366
[33] Grier D G 2003 Nature 424 810
[34] Simpson N B, Dholakia K, Allen L, and Padgett M J 1997 Opt. Lett. 22 52
[35] Prentice P, Macdonald M, Frank T, Cuschieri A, and Dholakia K 2004 Opt. Express 12 593
[36] Yao A and Padgett M J 2011 Adv. Opt. Photon. 3 161
[37] Simpson S H and Hanna S 2010 J. Opt. Soc. Am. A 27 1255
[38] Ostrovsky A S, Rickenstorff P C, and Arrizón V 2013 Opt. Lett. 38 534
[39] Vaity P and Rusch L 2015 Opt. Lett. 40 597
[40] García J, Rickenstorff P C, Ramos G R, Arrizón V, and Ostrovsky A S 2014 Opt. Lett. 39 5305
[41] Chen M, Mazilu M, Arita Y, Wright E M, and Dholakia K 2013 Opt. Lett. 38 4919
[42] Pinnell J, Rodríguez F V, and Forbes A 2019 Opt. Lett. 44 5614
[43] Li P, Zhang Y, Liu S, and Zhao J 2016 Opt. Lett. 41 2205
[44] Collinst S A 1970 J. Opt. Soc. Am. 60 1168
[45] Sun Q, Zhou K, Fang G, Zhang G, Liu Z, and Liu S 2012 Opt. Express 20 9682
[46] Karimi E, Zito G, Piccirillo B, Marrucci L, and Santamato E 2007 Opt. Lett. 32 3053
[1]
. [J]. 中国物理快报, 2022, 39(12): 123401-.
[2]
. [J]. 中国物理快报, 2020, 37(12): 124202-.
[3]
. [J]. 中国物理快报, 2020, 37(2): 24202-.
[4]
. [J]. 中国物理快报, 2019, 36(11): 114203-.
[5]
. [J]. 中国物理快报, 2018, 35(11): 114201-.
[6]
. [J]. 中国物理快报, 2018, 35(5): 54203-.
[7]
. [J]. 中国物理快报, 2016, 33(08): 88103-088103.
[8]
. [J]. 中国物理快报, 2015, 32(09): 94202-094202.
[9]
. [J]. 中国物理快报, 2015, 32(07): 74210-074210.
[10]
. [J]. 中国物理快报, 2014, 31(06): 64205-064205.
[11]
. [J]. Chin. Phys. Lett., 2012, 29(12): 124208-124208.
[12]
LING Xiao-Hui, LUO Hai-Lu, TANG Ming, WEN Shuang-Chun. Enhanced and Tunable Spin Hall Effect of Light upon Reflection of One-Dimensional Photonic Crystal with a Defect Layer [J]. 中国物理快报, 2012, 29(7): 74209-074209.
[13]
WANG Chun-Fang, BAI Yan-Feng, GUO Hong-Ju, CHENG Jing. Beam Splitting in Induced Inhomogeneous Media [J]. 中国物理快报, 2012, 29(6): 64208-064208.
[14]
LU Zhi-Xin;YU Li;**;LIU Bing-Can;;ZHANG Kai;SONG Gang;
. Femtosecond Pulse Propagation in a Symmetric Gap Surface Plasmon Polariton Waveguide [J]. 中国物理快报, 2011, 28(8): 87801-087801.
[15]
ZHANG Zhi-Wei;**;WEN Ting-Dun;WU Zhi-Fang
. A Novel Method for Heightening Sensitivity of Prism Coupler-Based SPR Sensor [J]. 中国物理快报, 2011, 28(5): 54211-054211.