1Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2University of Chinese Academy of Sciences, Beijing 100049, China 3CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China 4Kavli Institute of Theoretical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China 5Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract:We systematically measure the superconducting (SC) and mixed state properties of high-quality CsV$_{3}$Sb$_{5}$ single crystals with $T_{\rm c} \sim 3.5$ K. We find that the upper critical field $H_{\rm c2}(T)$ exhibits a large anisotropic ratio of $H_{\rm c2}^{ab}/H_{\rm c2}^{c} \sim 9$ at zero temperature and fitting its temperature dependence requires a minimum two-band effective model. Moreover, the ratio of the lower critical field, $H_{\rm c1}^{ab}/H_{\rm c1}^{c}$, is also found to be larger than 1, which indicates that the in-plane energy dispersion is strongly renormalized near Fermi energy. Both $H_{\rm c1}(T)$ and SC diamagnetic signal are found to change little initially below $T_{\rm c} \sim 3.5$ K and then to increase abruptly upon cooling to a characteristic temperature of $\sim $2.8 K. Furthermore, we identify a two-fold anisotropy of in-plane angular-dependent magnetoresistance in the mixed state. Interestingly, we find that, below the same characteristic $T \sim 2.8$ K, the orientation of this two-fold anisotropy displays a peculiar twist by an angle of 60$^{\circ}$ characteristic of the Kagome geometry. Our results suggest an intriguing superconducting state emerging in the complex environment of Kagome lattice, which, at least, is partially driven by electron-electron correlation.
Lin Z, Choi J H, Zhang Q, Qin W, Yi S, Wang P, Li L, Wang Y, Zhang H, Sun Z, Wei L, Zhang S, Guo T, Lu Q, Cho J H, Zeng C, and Zhang Z 2018 Phys. Rev. Lett.121 096401
[5]
Yin J X, Zhang S S, Chang G, Wang Q, Tsirkin S S, Guguchia Z, Lian B, Zhou H, Jiang K, Belopolski I, Shumiya N, Multer D, Litskevich M, Cochran T A, Lin H, Wang Z, Neupert T, Jia S, Lei H, and Hasan M Z 2019 Nat. Phys.15 443
[6]
Ye L, Kang M, Liu J, Von Cube F, Wicker C R, Suzuki T, Jozwiak C, Bostwick A, Rotenberg E, Bell D C, Fu L, Comin R, and Checkelsky J G 2018 Nature555 638
[7]
Yin J X, Zhang S S, Li H, Jiang K, Chang G, Zhang B, Lian B, Xiang C, Belopolski I, Zheng H, Cochran T A, Xu S Y, Bian G, Liu K, Chang T R, Lin H, Lu Z Y, Wang Z, Jia S, Wang W, and Hasan M Z 2018 Nature562 91
[8]
Liu E, Sun Y, Kumar N, Muechler L, Sun A, Jiao L, Yang S Y, Liu D, Liang A, Xu Q, Kroder J, Süß V, Borrmann H, Shekhar C, Wang Z, Xi C, Wang W, Schnelle W, Wirth S, Chen Y, Goennenwein S T B, and Felser C 2018 Nat. Phys.14 1125
[9]
Kang M, Ye L, Fang S, You J S, Levitan A, Han M, Facio J I, Jozwiak C, Bostwick A, Rotenberg E, Chan M K, Mcdonald R D, Graf D, Kaznatcheev K, Vescovo E, Bell D C, Kaxiras E, Van Den Brink J, Richter M, Prasad G M, Checkelsky J G, and Comin R 2020 Nat. Mater.19 163
[10]
Eric M K, Brenden R O, Chennan W, Stephen D W, and Michael G 2021 J. Phys.: Conden. Matter (accepted)
Ortiz B R, Teicher S M L, Hu Y, Zuo J L, Sarte P M, Schueller E C, Abeykoon A M M, Krogstad M J, Rosenkranz S, Osborn R, Seshadri R, Balents L, He J, and Wilson S D 2020 Phys. Rev. Lett.125 247002
Wang Y, Yang S, Sivakumar P K, Ortiz B R, Teicher S M L, Wu H, Srivastava A K, Garg C, Liu D, Parkin S S P, Toberer E S, Mcqueen T, Wilson S D, and Ali M N 2020 arXiv:2012.05898 [cond-mat.supr-con]
[17]
Zhao C C, Wang L S, Xia W, Yin Q W, Ni J M, Huang Y Y, Tu C P, Tao Z C, Tu Z J, Gong C S, Lei H C, Guo Y F, Yang X F, and Li S Y 2021 arXiv:2102.08356 [cond-mat.supr-con]
[18]
Chen H, Yang H, Hu B, Zhao Z, Yuan J, Xing Y, Qian G, Huang Z, Li G, Ye Y, Yin Q, Gong C, Tu Z, Lei H, Ma S, Zhang H, Ni S, Tan H, Shen C, Dong X, Yan B, Wang Z, and Gao H J 2021 arXiv:2103.09188 [cond-mat.supr-con]
[19]
Duan W, Nie Z, Luo S, Yu F, Ortiz B R, Yin L, Su H, Du F, Wang A, Chen Y, Lu X, Ying J, Wilson S D, Chen X, Song Y, and Yuan H 2021 arXiv:2103.11796 [cond-mat.supr-con]
[20]
Jiang Y X, Yin J X, Denner M M, Shumiya N, Ortiz B R, He J, Liu X, Zhang S S, Chang G, Belopolski I, Zhang Q, Shafayat H M, Cochran T A, Multer D, Litskevich M, Cheng Z J, Yang X P, Guguchia Z, Xu G, Wang Z, Neupert T, Wilson S D, and Zahid H M 2020 arXiv:2012.15709 [cond-mat.supr-con]
[21]
Chen K Y, Wang N N, Yin Q W, Tu Z J, Gong C S, Sun J P, Lei H C, Uwatoko Y, and Cheng J G 2021 arXiv:2102.09328 [cond-mat.supr-con]
[22]
Du F, Luo S, Ortiz B R, Chen Y, Duan W, Zhang D, Lu X, Wilson S D, Song Y, and Yuan H 2021 arXiv:2102.10959 [cond-mat.supr-con]
[23]
Yu F H, Wu T, Wang Z Y, Lei B, Zhuo W Z, Ying J J, and Chen X H 2021 arXiv:2102.10987 [cond-mat.str-el]
[24]
Liang Z, Hou X, Ma W, Zhang F, Wu P, Zhang Z, Yu F, Ying J J, Jiang K, Shan L, Wang Z, and Chen X H 2021 arXiv:2103.04760 [cond-mat.supr-con]
[25]
Uykur E, Ortiz B R, Wilson S D, Dressel M, and Tsirlin A A 2021 arXiv:2103.07912 [cond-mat.str-el]
[26]
Li H X, Zhang T T, Pai Y Y, Marvinney C, Said A, Yilmaz T, Yin Q, Gong C, Tu Z, Vescovo E, Moore R G, Murakami S, Lei H C, Lee H N, Lawrie B, and Miao H 2021 arXiv:2103.09769 [cond-mat.supr-con]
[27]
Yang S Y, Wang Y, Ortiz B R, Liu D, Gayles J, Derunova E, Gonzalez-Hernandez R, Smejkal L, Chen Y, Parkin S S P, Wilson S D, Toberer E S, Mcqueen T, and Ali M N 2020 Sci. Adv.6 eabb6003
[28]
Zhang Z, Chen Z, Zhou Y, Yuan Y, Wang S, Zhang L, Zhu X, Zhou Y, Chen X, Zhou J, and Yang Z 2021 arXiv:2103.12507 [cond-mat.supr-con]
[29]
Chen X, Zhan X, Wang X, Deng J, Liu X B, Chen X, Guo J G, and Chen X 2021 arXiv:2103.13759 [cond-mat.supr-con]
[30]
Ortiz B R, Gomes L C, Morey J R, Winiarski M, Bordelon M, Mangum J S, Oswald L W H, Rodriguez-Rivera J A, Neilson J R, Wilson S D, Ertekin E, Mcqueen T M, and Toberer E S 2019 Phys. Rev. Mater.3 094407
[31]
Zhao H, Li H, Ortiz B R, Teicher S M L, Park T, Ye M, Wang Z, Balents L, Wilson S D, and Zeljkovic I 2021 arXiv:2103.03118 [cond-mat.supr-con]