Accuracy of Machine Learning Potential for Predictions of Multiple-Target Physical Properties
Yulou Ouyang1 , Zhongwei Zhang1 , Cuiqian Yu1 , Jia He1 , Gang Yan1,2 , and Jie Chen1*
1 Center for Phononics and Thermal Energy Science, China–EU Joint Lab for Nanophononics, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China2 Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
Abstract :The accurate and rapid prediction of materials' physical properties, such as thermal transport and mechanical properties, are of particular importance for potential applications of featuring novel materials. We demonstrate, using graphene as an example, how machine learning potential, combined with the Boltzmann transport equation and molecular dynamics simulations, can simultaneously provide an accurate prediction of multiple-target physical properties, with an accuracy comparable to that of density functional theory calculation and/or experimental measurements. Benchmarked quantities include the Grüneisen parameter, the thermal expansion coefficient, Young's modulus, Poisson's ratio, and thermal conductivity. Moreover, the transferability of commonly used empirical potential in predicting multiple-target physical properties is also examined. Our study suggests that atomic simulation, in conjunction with machine learning potential, represents a promising method of exploring the various physical properties of novel materials.
收稿日期: 2020-09-26
出版日期: 2020-12-08
[1] Zhang Z et al. 2020 Phys. Rep. 860 1
[2] Xu W X and Liang X G 2020 Chin. Phys. Lett. 37 046601
[3] Zhang Z and Chen J 2018 Chin. Phys. B 27 035101
[4] Zhang Z et al. 2020 Phys. Rev. B 101 081402(R)
[5] Ouyang Y et al. 2019 Ann. Phys. (Berlin) 531 1800437
[6] Jiang P et al. 2020 J. Appl. Phys. 127 235101
[7] Karplus M and McCammon J A 2002 Nat. Struct. Biol. 9 646
[8] Durrant J D and McCammon J A 2011 BMC Syst. Biol. 9 71
[9] Feng T et al. 2015 Innovative Food Sci. Emerging Technol. 31 1
[10] Selvaraj C et al. 2018 Food Chem. Toxicol. 112 495
[11] Chenoweth K, van D A C T and Goddard W A 2008 J. Phys. Chem. A 112 1040
[12] Ishitani R et al. 2008 Proc. Natl. Acad. Sci. USA 105 15393
[13] Ma Y et al. 2018 Carbon 135 263
[14] Hu S et al. 2019 Nanoscale 11 11839
[15] Zhang Z, Chen J and Li B 2017 Nanoscale 9 14208
[16] Luo M and Dai L L 2007 J. Phys.: Condens. Matter 19 375109
[17] Stillinger F H and Weber T A 1985 Phys. Rev. B 31 5262
[18] Lindsay L and Broido D A 2010 Phys. Rev. B 81 205441
[19] Tersoff J 1988 Phys. Rev. B 37 6991
[20] Tersoff J 1989 Phys. Rev. B 39 5566
[21] Daw M S and Baskes M I 1984 Phys. Rev. B 29 6443
[22] MacDonald R A and MacDonald W M 1981 Phys. Rev. B 24 1715
[23] Brenner D W et al. 2002 J. Phys.: Condens. Matter 14 783
[24] Dyson A J and Smith P V 1996 Surf. Sci. 355 140
[25] Ding B et al. 2020 Natl. Sci. Rev. nwaa220 (accepted)
[26] Wang T et al. 2019 Adv. Funct. Mater. 30 1906041
[27] Ju S and Shiomi J 2019 Nanoscale Microscale Thermophys. Eng. 23 157
[28] Ju S et al. 2018 Phys. Rev. B 97 184305
[29] Ju S et al. 2017 Phys. Rev. X 7 021024
[30] Behler J 2017 Angew. Chem. Int. Ed. 56 12828
[31] Balabin R M and Lomakina E I 2011 Phys. Chem. Chem. Phys. 13 11710
[32] Bartók A P, Kondor R and Csányi G 2013 Phys. Rev. B 87 184115
[33] Deringer V L and Csányi G 2017 Phys. Rev. B 95 094203
[34] Bartók A P et al. 2018 Phys. Rev. X 8 041048
[35] Thompson A P et al. 2015 J. Comput. Phys. 285 316
[36] Shapeev A V 2016 Multiscale Model. Simul. 14 1153
[37] Szlachta W J, Bartók A P and Csányi G 2014 Phys. Rev. B 90 104108
[38] Jose K V J, Artrith N and Behler J 2012 J. Chem. Phys. 136 194111
[39] Peterson A A 2016 J. Chem. Phys. 145 074106
[40] Artrith N, Morawietz T and Behler J 2011 Phys. Rev. B 83 153101
[41] Mortazavi B et al. 2020 J. Phys.: Mater. 3 02LT02
[42] Zuo Y et al. 2020 J. Phys. Chem. A 124 731
[43] Qian X and Yang R 2018 Phys. Rev. B 98 224108
[44] Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15
[45] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[46] Plimpton S 1995 J. Comput. Phys. 117 1
[47] Chen J, Walther J H and Koumoutsakos P 2014 Nano Lett. 14 819
[48] Grima J N et al. 2015 Adv. Mater. 27 1455
[49] Jiang J W and Park H S 2016 Nano Lett. 16 2657
[50] Qin H et al. 2017 Nanoscale 9 4135
[51] Zhang Y Y et al. 2011 Carbon 49 4511
[52] Jing N et al. 2012 RSC Adv. 2 9124
[53] Togo A and Tanaka I 2015 Scr. Mater. 108 1
[54] Li W et al. 2014 Comput. Phys. Commun. 185 1747
[55] Qin G and Hu M 2018 npj Comput. Mater. 4 1
[56] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
[57] The QUIP package is open to academic users at http://www.libatoms.org/home/software
[58] Qian X et al. 2019 Mater. Today Phys. 10 100140
[59] Rowe P et al. 2018 Phys. Rev. B 97 054303
[60] Lee C et al. 2008 Science 321 385
[61] Van L G et al. 2000 Chem. Phys. Lett. 326 181
[62] Liu F, Ming P and Li J 2007 Phys. Rev. B 76 064120
[63] Gui G, Li J and Zhong J 2008 Phys. Rev. B 78 075435
[64] Sevik C 2014 Phys. Rev. B 89 035422
[65] Mann S, Kumar R and Jindal V K 2017 RSC Adv. 7 22378
[66] Lindsay L and Broido D A 2008 J. Phys.: Condens. Matter 20 165209
[67] Holland M G 1964 Phys. Rev. 134 A471
[68] Zhang Z et al. 2018 Carbon 139 289
[69] Lindsay L et al. 2014 Phys. Rev. B 89 155426
[70] Peng B et al. 2017 Nanoscale 9 7397
[71] Feng T and Ruan X 2018 Phys. Rev. B 97 045202
[1]
. [J]. 中国物理快报, 2022, 39(3): 36301-.
[2]
. [J]. 中国物理快报, 2021, 38(7): 77501-077501.
[3]
. [J]. 中国物理快报, 2021, 38(7): 76101-.
[4]
. [J]. 中国物理快报, 2021, 38(2): 28102-.
[5]
. [J]. 中国物理快报, 2019, 36(6): 66301-.
[6]
. [J]. 中国物理快报, 2019, 36(5): 56201-.
[7]
. [J]. 中国物理快报, 2018, 35(12): 126501-.
[8]
. [J]. 中国物理快报, 2018, 35(11): 117801-.
[9]
. [J]. 中国物理快报, 2017, 34(3): 30303-030303.
[10]
. [J]. 中国物理快报, 2016, 33(06): 66301-066301.
[11]
. [J]. 中国物理快报, 2016, 33(03): 36202-036202.
[12]
. [J]. 中国物理快报, 2016, 33(02): 26302-026302.
[13]
. [J]. 中国物理快报, 2015, 32(12): 126801-126801.
[14]
. [J]. 中国物理快报, 2015, 32(03): 36301-036301.
[15]
. [J]. 中国物理快报, 2014, 31(10): 106301-106301.