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Crystal structures  

The calculated lattice constants are 4.06 and 4.07 Å for InSe and In2Se3, 

respectively. Their lattice constants are comparable with almost no lattice mismatch. 

Next, we have considered three possible stacking configurations, as shown in Figure 

S1, labeled as In-In, Se-Se, and Se-In stacking patterns. We have imposed a 

commensurability condition between the InSe and In2Se3 monolayers, where a 11 

lateral periodicity is employed. From Table S1, we found that these electronic 

characteristics exhibit similar behavior. Moreover, all the calculated binding energies 

are negative, indicating that all the considered stacking patterns are energetically stable. 

In particular, we observe that there is little difference in the binding energy between the 

different stacking patterns of each heterostructure. So, for convenience, we only study 

the In-In stacking as an example in the following calculations since it has the lowest 

binding energy. 
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I. Stability calculations 

To assess the stability of the heterostructures, we calculate the binding energy (Eb) 

using the formula: 

 ( )
2 3 2 3b InSe/In Se InSe In Se /E E E E N= − −   

where 
2 3InSe/In SeE , 

InSeE , and 
2 3In SeE  are the total energies of vdWH, InSe, and In2Se3 

monolayers, respectively, and N is the number of atoms. From Table S1 can be seen 

that the calculated binding energies of vdWHs are negative, suggesting that the 

attractive interfacial interaction between InSe and In2Se3 layers is energetically 

favorable. 

Moreover, the phonon dispersions are calculated with the density functional 

perturbation theory by using the PHONOPY code. The interatomic forces are computed 

using the VASP code. The tolerance for the energy convergence used for the phonon 

calculations was 10−8 eVÅ−1.  6 × 6 × 1 supercell with 3 × 3 × 1 k-mesh is used to 

ensure the convergence. As shown in Figure. S2, no appreciable imaginary vibrational 

frequency modes are observed in the entire Brillouin zone, proving that the 

heterostructure is kinetically stable. 

 

II. Monte Carlo simulation 

To predict the Curie temperature (Tc) of these heterostructures, Monte Carlo (MC) 

simulations were performed based on the Heisenberg model. Without an external field, 

the Hamiltonian of the Heisenberg model is described by: 
 

2

,

ˆ ˆ ˆ( )z

ij i j i

i j i

H J S S D S= − − 
 

where ijJ  is the exchange coupling constant between i and j sites, ˆ
iS  and ˆ

jS  are 

spin operators. D  represent the magnetic anisotropy energy, which is calculated from 

the energy difference of magnetization along z and x/y axis, with a value of 0.2 meV.  

the energies of the FM and AFM states are: 

 2

0 6FME E JS= −  

 2

0 2AFME E JS= +  

here, 0E  is the system energy without considering the spin degree of freedom. The 
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value of exchange integral ijJ  is about 24.91 meV, obtained by calculating energies 

of FM and AFM states. In the MC simulations, we used a 200×200 supercell to reduce 

the periodic constraints. At each temperature, 5×105 loops are taken to achieve an 

average magnetic moment value. The variation of the magnetic moment per unitcell 

with respect to temperature is plotted in Figure. S4 (c). We see that the magnetic 

moment per unitcell starts to drop gradually from 0.5 μB and The 𝑇C of 84 K was read 

from the peak position of the specific heat defined as 
22 2( ) / ( )V BC E E k T= − . 

According to the Stoner model, the ferromagnetic state is stabilized by the 

condition: 

Im = , 

where ∆ is the exchange splitting of the spin-up and spin-down bands (VB in our case), 

I is the Stoner parameter, and m is the magnetization density ( m n n
 

= − ), n


( n


) is 

the total number of electrons in spin up (down) channel. From the total DOS under each 

doping condition, we can get ∆ and m. For doping concentrations of 9.751014/cm2, ∆ 

is approximately 0.375 eV of VB, and m is 0.88, and, thus, 𝐼 is 0.426 eV. According to 

Stoner criterion, the spin splitting will occur when 

F( ) 1D E I  , 

where 𝐷(𝐸𝐹) is the total density of state (DOS) at the Fermi level. 

The valance bands have local maxima near the EF. And they cause the large density 

of states near the EF. Therefore, with a small change in doping concentration, the DOS 

at the Fermi level will be large. When the doping concentration is 9.751014/cm2, the 

resulting DOS (5.261 states/eV) is sufficient to cause spin splitting. 
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Fig. S1. Three stacking patterns of InSe/In2Se3 vdWHs. 

 

Table S1 Calculated lattice constant (a), bandgap (Eg) obtained by the PBE, binding energy (Eb), 

and interlayer distance (d). 

 a (Å) Eg (eV) Eb (meV per atom) d (Å) 

InSe 4.06 1.53   

In2Se3 4.07 0.81   

In–In (P) 4.07 0.45 –30.04 2.95 

In–In (P) 4.07 0.48 –28.27 3.00 

Se–Se (P) 4.08 0.49 –27.27 3.13 

Se–Se (P) 4.07 0.54 –17.92 3.77 

Se–In (P) 4.07 0.46 –29.38 3.04 

Se–In (P) 4.07 0.47 –28.26 3.06 

 

 

Fig. S2. Phonon band dispersion for InSe/In2Se3 vdWH. 
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Fig. S3 Doping level dependence of the magnetic moment (black curve) and magnetization energy 

(red curve) for (a) InSe, (b) In2Se3, (c) InSe/In2Se3 (P↑), and (d) InSe/In2Se3 (P), respectively, 

where μB is the Bohr magneton. The light blue regions indicate large spin polarization energies. 

 

 

Fig. S4 Temperature-dependent average magnetic moment per unitcell obtained by Monte Carlo 

simulations based on the Heisenberg model.  
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Fig. S5 (a) Spin-polarized band structure and (b) spin-polarized PDOS of InSe/In2Se3 (P↑) vdWH 

under a hole density of 9.75×1014/cm2. Blue (red) and cyan (orange) lines represent the contributions 

of the InSe (In2Se3) layer with the spin-up and spin-down bands, respectively. The EF is set at zero 

and marked with the black dashed line. 

 

  

 

Fig. S6 Polar atomic displacement (dz) as a function carrier density for the InSe/In2Se3 vdWH (P↓). 

The insets illustrate the definitions of dz in InSe/In2Se3 vdWH (P↓). 

 

Table S2. Total energies 2×2 supercell of InSe/In2Se3 vdWH under NM, FM and AFM. 

 Total energy (eV) 

NM -135.789929 

AFM -135.788973 

FM -135.789727 

 


