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I. DETAILS ON THE ¢t —J MODEL

We constrain the Hilbert space to consist of five states at each site and perform the standard second-order pertur-
bation theory, the superexchange coupling parameters are related to the original parameters through the following
equations:
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where the third term (t57)?(5 JHl o é) in J] is from the superexchange process between the half-filled and empty

orbitals, and contributes to the intra-layer ferromagnetic coupling, which is absent in .J} since the inter-orbital hopping
between layers is zero.

II. DERIVATION OF THE SELF-CONSISTENT MEAN-FIELD HAMILTONIAN

In the main text, we define the Gutzwiller projection operator P, which is expressed in terms of fugacities n and
operators (. To be specific, operators () are defined as:
Qe.0(il) = N11io (1 = R1gsio ) (1 — Ragir ) (1 — Rariy)
Q2e,ao’ (Zl) = ﬁll;io(l - ﬁll;i&)f@l;io’ (1 - ﬁQl;z’c;’) ) (2)
and the fugacities n are related to the expections of operators Q through:
(PQieo(il)P)o
(PP)o
(L1 P2V P(il)Que,0 (i) P(il) o
Hil Zil
— n%a(ilel&U(il))O (3)

Zil

<Qle,o(il)>:




where z;; = (P2(il))o. It is also easy to see that 02,0 (i) )zt = (Q2e.000 (i1)) /{Q2e.66:(il))o. We further make approxi-
mations about the expectation of operators ) before and after the projection, so that:
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Where § is the hole doping parameter. Here, we assume the electron densities before and after projection are same,

that is narie = ngl;w. With these relations, we can evaluate the energy F = <E[t_J>. By taking Wick contractions,

the energy E can be express in terms of expectation values with respect to the non-interacting state |1g). Here we
take one kinetic term as an example to illustrate the process.
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Considering the Hamiltonian is defined in the restricted Hilbert space, the operator Cgl;w should be understanded
as C;z-w = Ptriplet(il)c;,w, with Ptm-plet(il) = (Sui - S + %) projecting out the spin-singlet state. Similarly

Colijo = CQl;jo-ptriplet(jl). We substitute (2) into equation (5), the first term in (5) is then:
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After evaluating the J-term as was done for the kinetic term above, we finally get the total energy F = E(x,A,n)
which is expressed in terms of non-interacting expectations. In this work, we don’t relate the expectations after
projection to the expectations before projection by a simple multiplicative factor, like (c;l;wcm;jﬁ = gt<c;l;mcm;jg>o,
instead, we include the inter-site correlation and take all possible Wick contractions to derive a relatively complicated
expression for the energy. We believe that this is a better choice to deal with the strong correlated materials.

III. CALCULATION OF THE SUPERFLUID STIFFNESS

With the self-consistent numerical results of the mean-field Hamiltonian, it is straighforward to evaluate the equation
for superfluid stiffness presented in the main text. Substituting equation (9) into (8), the resulting current-current
correlation function can be expressed as:
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where C' = 2(ti1'2)2 /N | and the elements A and B are given by:
A= <02l ;a0 (k+aq,7 >02l’ iyo! (k/ - q, 0)>0<021;BU (k7 7)021’,50’(kl7 O)>0 ) (8)
B = (c}).00 (K + 0, 7)o 50 (K, 0)) 0 (c21;80 (K, )by o (K — 1, 0))0 - 9)
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FIG. 1. The renormalized factor g versus hole doping for superconducting phases (a) with and (b) without G-AFM order.

In the last step of equation (7), we apply Wick’s theorem. Using the unitary matrix U(k) which diagonalizes the
effective mean-field Hamiltonian in momentum space with the basis operator \IITSl;aU(k) = [CL;AT(k), CL;BT(k), cgt;AT

(k)7 c;t;B’r(k>7 CL);AT(k), CJ{b;BT (k)a Cgb;AT(k% Cgb;Bﬁ(k% Cltv‘li(_k)’ clt;Bi<_k>7 CQt;Ai(_k)’ CQt;Bi(_k>7 Clb;Ai(_k),
c1v:81(—k), cap, 4y (—k), cop, 3y (—k)], the correlators in the above equation can be further expressed as:
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where ¢,, Shae) (k)

i are defined as Eilk = CTSl;aa (k)U,(l . Considering:
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With these relations, we finally have:
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The kinetic energy term for the superfluid stiffness can be obtained according to the method in sec. [T} and we use it
to calculate the renormalized factor g. The corresponding factors for different states are shown Fig. [1]
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