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I. DETAILS ON THE t− J MODEL

We constrain the Hilbert space to consist of five states at each site and perform the standard second-order pertur-
bation theory, the superexchange coupling parameters are related to the original parameters through the following
equations:
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where the third term (tintra
12 )2( 1

2JH+ε2
− 1

ε2
) in J ′1 is from the superexchange process between the half-filled and empty

orbitals, and contributes to the intra-layer ferromagnetic coupling, which is absent in J ′2 since the inter-orbital hopping
between layers is zero.

II. DERIVATION OF THE SELF-CONSISTENT MEAN-FIELD HAMILTONIAN

In the main text, we define the Gutzwiller projection operator P̂ , which is expressed in terms of fugacities η and
operators Q̂. To be specific, operators Q̂ are defined as:

Q̂1e,σ(il) = n̂1l;iσ(1− n̂1l;iσ̄)(1− n̂2l;i↑)(1− n̂2l;i↓) ,

Q̂2e,σσ′(il) = n̂1l;iσ(1− n̂1l;iσ̄)n̂2l;iσ′(1− n̂2l;iσ̄′) , (2)

and the fugacities η are related to the expections of operators Q̂ through:
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where zil = 〈P̂ 2(il)〉0. It is also easy to see that η2
2σσ′(il)/zil = 〈Q̂2e,σσ′(il)〉/〈Q̂2e,σσ′(il)〉0. we further make approxi-

mations about the expectation of operators Q̂ before and after the projection, so that:
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Where δ is the hole doping parameter. Here, we assume the electron densities before and after projection are same,
that is nαl;iσ = n0

αl;iσ. With these relations, we can evaluate the energy E = 〈Ĥt−J〉. By taking Wick contractions,

the energy E can be express in terms of expectation values with respect to the non-interacting state |ψ0〉. Here we
take one kinetic term as an example to illustrate the process.
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Considering the Hamiltonian is defined in the restricted Hilbert space, the operator c†2l;iσ should be understanded
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4 ) projecting out the spin-singlet state. Similarly

c2l;jσ ≡ c2l;jσP̂triplet(jl). We substitute (2) into equation (5), the first term in (5) is then:

〈Q̂2e,σσ(il)c†2l;iσQ̂1e,σ(il)Q̂1e,σ(jl)c2l;jσQ̂2e,σσ(jl)〉0
= −〈c†1l;iσc

†
1l;jσc

†
2l;iσc1l;iσc1l;jσc2l;jσ〉0 + . . .

= n1l;iσn1l;jσχ
intra
(2l;iσ)(2l;jσ) − χ

intra
(1l;iσ)(1l;jσ)χ

intra
(1l;jσ)(1l;iσ)χ

intra
(2l;iσ)(2l;jσ)

+χintra
(1l;iσ)(2l;jσ)χ

intra
(1l;jσ)(1l;iσ)χ

intra
(2l;iσ)(1l;jσ) + · · · . (6)

After evaluating the J-term as was done for the kinetic term above, we finally get the total energy E = E(χ,∆, n)
which is expressed in terms of non-interacting expectations. In this work, we don’t relate the expectations after

projection to the expectations before projection by a simple multiplicative factor, like 〈c†2l;iσc2l;jσ〉 = gt〈c†2l;iσc2l;jσ〉0,
instead, we include the inter-site correlation and take all possible Wick contractions to derive a relatively complicated
expression for the energy. We believe that this is a better choice to deal with the strong correlated materials.

III. CALCULATION OF THE SUPERFLUID STIFFNESS

With the self-consistent numerical results of the mean-field Hamiltonian, it is straighforward to evaluate the equation
for superfluid stiffness presented in the main text. Substituting equation (9) into (8), the resulting current-current
correlation function can be expressed as:
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where C = 2(tintra
22 )2/N , and the elements A and B are given by:

A = −〈c†2l;ασ(k + q, τ)c†2l′;γσ′(k
′ − q, 0)〉0〈c2l;βσ(k, τ)c2l′,δσ′(k′, 0)〉0 , (8)

B = 〈c†2l;ασ(k + q, τ)c2l′,δσ′(k′, 0)〉0〈c2l;βσ(k, τ)c†2l′;γσ′(k
′ − q, 0)〉0 . (9)
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FIG. 1. The renormalized factor g versus hole doping for superconducting phases (a) with and (b) without G-AFM order.

In the last step of equation (7), we apply Wick’s theorem. Using the unitary matrix U(k) which diagonalizes the

effective mean-field Hamiltonian in momentum space with the basis operator Ψ†Sl;ασ(k) = [c†1t;A↑(k), c†1t;B↑(k), c†2t;A↑
(k), c†2t;B↑(k), c†1b;A↑(k), c†1b;B↑(k), c†2b;A↑(k), c†2b;B↑(k), c1t;A↓(−k), c1t;B↓(−k), c2t;A↓(−k), c2t;B↓(−k), c1b;A↓(−k),

c1b;B↓(−k), c2b;A↓(−k), c2b;B↓(−k)], the correlators in the above equation can be further expressed as:

∑
σσ′

〈c†2l;ασ(k + q, τ)c†2l′;γσ′(k
′ − q, 0)〉0〈c2l;βσ(k, τ)c2l′,δσ′(k′, 0)〉0
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where c̃†nk are defined as c̃†nk = c†Sl;ασ(k)U
(Sl;ασ)
n (k). Considering:

〈c̃†nk(τ)c̃nk(0)〉0 = eEn(k)τnF (En(k)) ,

〈c̃†nk(0)c̃nk(τ)〉0 = −(1− nF (En(k)))e−En(k)τ . (11)
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With these relations, we finally have:
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The kinetic energy term for the superfluid stiffness can be obtained according to the method in sec. II, and we use it
to calculate the renormalized factor g. The corresponding factors for different states are shown Fig. 1.
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