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A. Hamiltonian H 

Figures 1(c) and 1(d) in the main text represent specific instances of intercell 

hoppings for a square unit and a rhombic unit, respectively. The signs of the hoppings 

change with the angles between the cells, aligning with the intracell hoppings (i.e., the 

two sites with specific numbers connected by a solid or dashed line in a cell, are also 

connected by a solid or dashed line between cells, respectively), as shown in Fig. A1. 

 

Fig. A1 (a) The other instances of intercell hoppings for the square unit in Fig. 1(c). The other instances 

of intercell hoppings for the rhomboid unit in Fig. 1(d): (b)–(d). The solid and dashed lines connecting 

cells represent positive and negative intercell hoppings, respectively. 

According to Eqs. (2) and (3) in the main text, the intracell hopping in a cell in 

Figs. 1 and A1 is 
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The spatial decay factor of the intercell hopping amplitude is 

 
1

( ) jkr

jkf r e
−

= , (A2) 

where rjk = l0, l1, or l2. l0 is the side length of the square or rhombus, l1 is the length of 

the diagonal of the square, and l2 is the length of the short diagonal of the rhombus in 

Ammann–Beenker (AB) tiling quasicrystals. Here l0 = 1. 

The term related to the angle between cells is 
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where 
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hopping direction (j→k) and the positive horizontal direction. 

Moreover, the part of the Hamiltonian related to dissipation δHD in Eq. (12) in the 

main text is 
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B. Kitaev formula 

In order to shorten the calculation time, we use another form of the Kitaev formula 

to calculate the Chern numbers for band α:[1] 

 12 (Tr( ) Tr( ))α α α α α α

αC πi P P P P P P= −A B C A C B , (B1) 

where A , B  and C  are the projection operators of regions A, B and C in Fig. 1(a), 

( + + = 1A B C , 1 is the identity matrix). Under the open boundary condition, it is 

difficult to completely separate the bulk states from the topological edge states (TESs). 

In order to avoid the influence of the TESs on the calculation of the Chern numbers for 

bulk bands, we set the elements of the region close to the outer boundary in the 

projection operator 
αP  to be 0, with reference to the calculation of Chern numbers in 

the hyperbolic model.[2] For the quasicrystal with the regular octagon outer boundary, 

the distance from the site to the center of the quasicrystal is d1, and the distance from 

the center of the quasicrystal to its outer boundary is d0. The region close to the outer 

boundary of the quasicrystal is defined as: d1/d0 > 0.85. 

C. Local Chern marker 

In addition to the Kitaev formula, it is also possible to calculate the real-space 
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Chern numbers in a quasicrystal with the local Chern marker.[3] The local Chern marker 

is modified below for non-Hermitian systems. In a non-Hermitian system, the local 

Chern number for band α at the lattice site 
ir  can be defined as 
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rC , where rD is the radius of the selected region D. 

In order to shorten the calculation time, the local Chern number can be changed to 

the matrix calculation: 
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where X and Y are coordinate operators for x- and y-coordinates. Similar to Sec. B, 

when tracing, only the elements on the diagonal of the matrix that are not close to the 

outer boundary are summed (in this case, d1/d0 ≤ 0.85). In Fig. 2(a) in the main text, the 

average local Chern numbers are C1 = C4 ≈ − 0.90 and C2 = C3 ≈ 0.90. It is worth noting 

that the Chern number studied by the Kitaev formula is more rubust than that studied 

by the local Chern marker.[3] 

D. Bulk states in quasicrystals 

In order to study the Chern numbers for the bulk bands, it is necessary to 

distinguish the bulk states from the TESs. The method for obtaining pure bulk states is 

shown in Fig. D1. Since the quasicrystal structure is not periodic, it is impossible to 

remove all TESs by a periodic boundary condition (PBC) to obtain pure bulk states, but 

it is still possible to consider the quasicrystal structure as a unit to construct a periodic 

structure (as shown in Fig. D1(a)) and obtain approximate bulk bands (as shown in Figs. 
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D1(b) and D1(c)). 

 

Fig. D1 (a) Schematic of constructing a periodic structure with the AB tiling quasicrystal (the light-

colored region is the equivalent hoppings set for the boundary when constructing a periodic structure). 

(b) Complex energy spectrum of Fig. D1(a); δ and t in the Hamiltonian H are the same as those of Fig. 

2(a) in the main text. (c) Complex energy spectrum of Fig. D1(a); δ and t in the Hamiltonian H are the 

same as those of Fig. 3(e) in the main text. 

The eigenstates in the complex energy spectra in Figs. D1(b) and D1(c) correspond 

to the bulk states without skin effect. According to Figs. D1(b) and D1(c), it is possible 

to distinguish the bulk states with PBC along both directions from the TESs (see Fig. 

2(a) in the main text and Fig. E1 below). In fact, since there is no skin effect for the 

bulk, it is also possible to distinguish the bulk states from the TESs localized at corners 

due to skin effect according to the eigenfield distribution.[4−7]
 

E. Additional data to Fig. 3 in the main text 

For the localization effect of topological states with the quadrilateral outer 

boundary, the situations for the kite and square outer boundary are analyzed in the main 

text (as shown in Figs. 3(a) and 3(b)). In order to verify the localization of topological 

states for the parallelogram outer boundary, the complex energy spectrum of the AB 

tiling quasicrystal and the eigenfield of its TES for the parallelogram outer boundary 

are calculated (as shown in Fig. E1(a)). It can be seen that the eigenfield of the TES is 

localized at the corners due to the skin effect, i.e., the hybrid skin-topological effect 

(HSTE) is realized. 
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Fig. E1 (a)–(c) Complex energy spectra of the models with different quadrilateral outer boundaries; δ 

and t in the Hamiltonian H are the same as those of Fig. 2(a) in the main text. (a) For the parallelogram 

outer boundary, the complex energy spectrum and the normalized eigenfield for the red dot marked by 

the red arrow. (b) and (c) Complex energy spectra of Figs. 3(a) and 3(b) in the main text, where the red 

dots marked by the red arrows are corresponding to the eigenvalues of the eigenfields in the main text. 

(d)–(g) Complex energy spectra of the models with different outer boundaries; δ and t in the Hamiltonian 

H are the same as those of Fig. 3(e) in the main text. (d) Complex energy spectrum of Fig. 3(e) in the 

main text. The Chern numbers for the bulk bands in the dashed circles are C1, C2, C3, and C4. The red 

dot marked by the red arrow is corresponding to the eigenvalue of the eigenfield in the main text. (e) 

Complex energy spectrum of Fig. 3(f) in the main text, where the red dot marked by the red arrow is 

corresponding to the eigenvalue of the eigenfield in the main text. (f) Complex energy spectrum and the 

normalized eigenfield for the red dot marked by the red arrow, when the outer boundary of Fig. 3(f) in 

the main text is rotated 90°. (g) Energy spectrum of ( )rH E  as a function of the eigenvalue index n 

when Er is the same as the eigenvalue of Fig. 3(e) in the main text. The zero-energy (marked by the red 

dots) eigenfield is shown in the inset in the bottom right corner, and the eigenfield for the eigenvalues 

adjacent to the zero-energy eigenvalues (marked by the green dots) is shown in the inset in the top left 

corner. 

The complex energy spectra of Figs. 3(a), 3(b), 3(e) and 3(f) in the main text are 

shown in Figs. E1(b)–E1(e), respectively, revealing the emergence of TESs in the bulk 

gaps. However, the skin effect on TESs cannot be analyzed only according to the 

complex energy spectrum, and the analysis needs to be combined with the eigenfield or 
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auxiliary Hamiltonian (see the main text). In Fig. E1(d), the Chern numbers for bulk 

bands are calculated according to Eq. (4) in the main text: C1 = C4 ≈ −0.99 and C2 = C3 

≈ 0.99. The existence of the TESs is ensured by the nontrivial topological invariants. In 

addition, when the outer boundary of Fig. 3(f) in the main text is rotated 90°, the 

Hamiltonian for TESs will change because the system is only twofold rotationally 

symmetric, so the energy spectra of the TESs in Figs. E1(e) and E1(f) are also different. 

In the main text, under the action of HSTE, the eigenfield of the TES is localized 

at two corners in Fig. 3(e). In order to further analyze the HSTE in Fig. 3(e), the 

auxiliary Hamiltonian is analyzed below. As shown in Fig. E1(g), four degenerate zero-

energy eigenstates appear in the edge gap of the auxiliary Hamiltonian ( )rH E  (as 

shown by the red dots). It can be seen from the eigenfield that these zero-energy 

eigenstates are indeed corner states (as shown in the inset in the bottom right corner in 

Fig. E1(g)). In other words, the skin effect indeed acts on the TESs of the original 

Hamiltonian H. Different from Fig. 2(c) in the main text, fourfold degenerate zero-

energy eigenstates appear in Fig. E1(g), and the corresponding eigenfields are only 

localized at four corners of the regular octagon, while the eightfold degenerate zero-

energy eigenstates appear in Fig. 2(c). Moreover, the four eigenstates adjacent to the 

zero-energy eigenstates (as shown by the green dots) become edge states (as shown in 

the inset in the top left corner in Fig. E1(g)). According to these edge states for the 

auxiliary Hamiltonian, the other four corners are barely affected by the skin effect. 

F. HSTE in disordered cases 

For ω = 0.2 or 0.5 (ω is the parameter related to disorder), the complex energy 

spectra of the system with specific δ and t and the eigenfields for HSTE are shown in 

Fig. F1. 
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Fig. F1 Models with the regular octagon outer boundary; δ21 = δ43 = δ65 = δ87 = δ61 = δ25 = δ83 = δ47 = 0.3 

+ U, δ23 = δ45 = δ67 = δ81 = δ27 = δ63 = δ41 = δ85 = 0.8 + U, and t = 1.2; U is a random number chosen 

uniformly in the range [−ω, ω] in the Hamiltonian H. The complex energy spectra; the normalized 

eigenfields for the red and green dots marked by arrows in the complex energy spectra: (a)–(c) ω = 0.2; 

(d)–(f) ω = 0.5. 

When ω = 0.2 or 0.5, there are states that realizes HSTE in the bulk gap of the 

complex energy spectrum (as shown in Figs. F1(a) and F1(d)), and the corner 

localization of these states may be different (as shown in Figs. F1(b), F1(c), F1(e), and 

F1(f)). Moreover, considering the above results from the point of view of auxiliary 

Hamiltonian, when the reference energys Er are consistent with the eigenvalues of the 

above TESs, the corner states of the auxiliary Hamiltonian ( )rH E  corresponding to 

Figs. F1(a) and F1(d) are robust to disorder, which is similar to the corner states of the 

higher-order topological Anderson insulator.[8] It is evident that the HSTE in the 

quasicrystals can also remain stable for strong disorder, while the corner localization 

may change for different eigenvalues, which is helpful to further regulate the 

localization with HSTE. 
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G. HSTE with four-site cells in AB tiling quasicrystals 

The AB tiling quasicrystals with four-site cells can also realize HSTE, and the 

analysis is shown in Fig. G1. 

 

Fig. G1 (a) AB tiling quasicrystal with a square outer boundary. The inner boundary is set for calculating 

the Chern numbers for the bulk bands with the Kitaev formula. The three regions divided by the inner 

boundary are marked by A, B, and C. (b) Schematic of the four-site cell and the hoppings (here is a 

magnification of the blue box in the bottom left corner in Fig. G1(a)). When δ1 = δ2 = 0.3, δ3 = δ4 = −1, 

t = 0.85: (c) the complex energy spectrum. The Chern numbers for the bulk bands in the dashed circles 

are C1, C2, C3, and C4; (d) the normalized eigenfield for the red dot marked by the red arrow in Fig. G1(c). 

As shown in Fig. G1(a), a square outer boundary is set for the quasicrystal, where 

each point represents a cell and each cell contains four sites (see Fig. G1(b)). The 

intercell hoppings are introduced on the sides of the square units, as well as the sides 

and shorter diagonals of the rhomboid units (similar to Figs. 1(c) and 1(d) in the main 

text, but no hoppings are introduced on the diagonals of the square units, different from 

the main text). Analog to the two-dimensional square lattice Su–Schrieffer–Heeger 

(SSH) model realizing HSTE,[4] the nonreciprocal intracell hoppings are introduced 

(the nonreciprocity is achieved using a non-zero δ, with δ quantifying the nonreciprocal 

hopping between two sites). 

The form of Hamiltonian H of the system is the same as that in the main text (i.e., 

Eqs. (1), (2), and (3)), but the specific contents of T, t, f(rjk), and Ω(ϕjk) are different:  
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T is the intracell hopping of a cell, 

 3 4 3 41 2 1 2
1 2 3 4 5 6Γ Γ Γ Γ Γ Γ

2 2 2 2

δ δ δ δδ δ δ δ
T i i i i

+ −+ −
= + + + − + , (G1) 

where 1 2 2Γ τ τ= , 2 0 1Γ τ τ= , 3 0 2Γ τ τ= , 4 3 2Γ τ τ= , 5 2 1Γ τ τ= , and 6 1 2Γ τ τ= . 
1,2,3τ  are 

the Pauli matrices, and 0τ  is the identity matrix.  

t is the intercell hopping amplitude, and f(rjk) is the spatial decay factor of the 

intercell hopping amplitude, 

 
1

( ) jkr

jkf r e
−

= , (G2) 

where rjk = l0 or l1. l0 is the side length of the square or rhombus, and l1 is the length of 

the short diagonal of the rhombus in the AB tiling quasicrystals. Here l0 = 1. 

Ω(ϕjk) is a term related to the angle between cells, 

 
2 4 1 6Ω( ) cos Γ cos Γ sin Γ sin Γjk jk jk jk jki i= − − −     , (G3) 

where 
jk  is the angle between the hopping direction (j→k) and the positive horizontal 

direction. 

According to Eq. (4) in the main text, the Chern numbers for the bulk bands in Fig. 

G1(c) are C1 = C4 ≈ −0.99 and C2 = C3 ≈ 0.99, and the nontrivial topological invariants 

ensure the existence of the TESs. In Fig. G1(d), the eigenfield of the TES is localized 

at the corners due to the skin effect, i.e., the HSTE is realized. 
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