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SOLUTION OF THE SLAVE-SPIN THEORY WITHIN
WEISS MEAN-FIELD APPROXIMATION

In this part, we show the saddle-point solution of the
slave spin theory within a Weiss mean-field decomposition in
Eq. (7) of the main text obtained by diagonalization.

First, we find the dMIMT taking place at a finite hc with

hc ≃ U/2×
√
Uc(U

−1
c − U−1). (S1)

Note that in the single-orbital Hubbard model, one can always
set h = −µ, where µ is the electron chemical potential. This
makes the ratio a = h/U proportional to doping δ, as shown
in Figs. Fig. (S1a) and Fig. (S1b). Actually,

a = ac(1 + b δ). (S2)

where the factor b decreases as U increases, and the critical
value ac =

√
U−1
c − U−1/2.

The ratio a is shown for both its bare values in Fig. (S1c)
and its changes from the critical point a/ac in Fig. (S1d). The
change in a as a percentage of ac is about 4 times of δ, hence
leads to the increase of J0 as δ increases. We consider that

it is an artifact of mean field theory since h accounts also for
effects due to the hopping terms.

The dMIMT is of Brinkman-Rice type, as we find that Z ∝
δ which is shown in Fig. (S2a). To support the survival of the
Nagaoka-ferromagnetic interaction in the U → ∞ limit, we
plot Z/δ as a function of U−1. As shown in Fig. (S2b), Z/δ
converges to 1 in the limit of U → ∞, which indicates that
the FM exchange coupling in Eq.(18) of the main text keeps
finite in this limit.

PERTURBATIVE SCHWINGER’S EQUATION-OF-MOTION
APPROACH FOR QUANTUM SPINS

A full description of the perturbative Schwinger’s equation-
of-motion approach for spin-1/2 quantum spins is given in
Ref. [32] independently. Here we briefly present the approach
and the solutions for the slave spins.

The Schwinger’s equation-of-motion theory converts the
operator Heisenberg-equations-of-motion (HEoM) into equa-
tions of motion for the Green’s functions. For the quantum
spins that obey the SU(2) Lie-algebra, we introduce both a
bosonic and a fermionic Green’s functions as the follows:

iGOO′

η [i, f ] = ⟨⟨Ôi[ti]Ô
′
f [tf ]⟩⟩η =⟨T±

[
Ôi[ti]Ô

′
f [tf ]

]
⟩ − Cη⟨Ôi⟩⟨Ô′

f ⟩

= ⟨θ(ti − tf )Ôi[ti]Ô
′
f [tf ] + ηθ(tf − ti)Ô

′
f [tf ]Ôi[ti]⟩ − Cη⟨Ôi⟩⟨Ô′

f ⟩,
(S3)

where η = B, F as subscripts while η = ± correspondingly
in the equations and CB(F ) = 2(0). Whereas GOO′

B(F )[i, f ] are
considered to constitute a complete set, we consider both here
since sometimes it is more convenient to use one not the other
for computing certain quantities of interests. Details of such
consideration is available in Ref. [30] of the main text.

Atomic limit solution

In the atomic limit, since the slave spin Hamiltonian

HS,at =
U

2

∑
i

(
∑
s

Sz
is)

2 + h
∑
is

Sz
is (S4)

is purely Ising-type, we only need to consider

Gαᾱ′

η,S,ss′ [i, f ] = ⟨T [Sα
is(ti)S

ᾱ′

fs′(tf )]⟩ − 2⟨Sα
is⟩⟨Sᾱ′

fs′⟩, (S5)

with α = + or −.

First, we obtain the HEoM

−i∂tSα
is = [HS

int, S
α
is] = αUSz

is̄S
α
is + αhSα

is. (S6)

Correspondingly, the SEoM is
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FIG. S1. (S1a) bare values of h shown at different U ’s as functions
of δ; (S1b) ac = hc/U shown as a function of U−1 over the full
range; (S1c) bare values of a = h/U ; (S1d) the relative change of a
from ac
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FIG. S2. (S2a) Z = M2
x/2 shown as functions of δ at different

U ’s; (S2b) Z/δ plotted as a function of U−1 down to zero which
converges to 1.

−i∂tiGαᾱ′

B,S,σσ′ [i, f ] = α
(
2⟨Sz

σ⟩δαα′δσσ′δ[i, f ]− hGαᾱ′

B,S,σσ′ [i, f ] + J Γzα;ᾱ′

B,S,σ̄σ;σ′ [i, f ]
)
, (S7)

−i∂tiGαᾱ′

F,S,σσ′ [i, f ] = δαα′δσσ′δ[i, f ] + α
(
−hGαᾱ′

F,S,σσ′ [i, f ] + J Γzα;ᾱ′

F,S,σ̄σ;σ′ [i, f ]
)
, (S8)

where Γαα′;α′′

B(F )ss′;s′′ [i, f ] denotes the vertex functions defined
as

iΓαα′;α′′

B(F ),S,ss′;s′′ [i, f ] = ⟨⟨Sα
s [ti]S

α′

s′ [ti]S
α′′

s′′ [tf ]⟩⟩B(F ). (S9)

In the Ising limit, the vertex function can be simplified as

iΓzα;α′

B(F ),S,ss′;s′′ [i, f ] = ⟨Sz
is⟩Gαα′

B(F ),S,s′s′′ [i, f ]. (S10)

To simplify the notation, we shall drop the slave spin in-
dex s so that Gαᾱ′

S indicates a 2 × 2 matrix. Here σi denotes
the Pauli matrices (σ0 being the identity matrix). Denoting
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⟨Sz
a + Sz

b ⟩ = M, ⟨Sz
a − Sz

b ⟩ = m, which are good quantum
numbers, we obtain

Gαᾱ′

B,S [ω] =
αδαα′(Mσ0 +mσz)

ω − α(h+ U(Mσ0 −mσz)/2)
, (S11)

Gαᾱ′

F,S [ω] =
δαα′σ0

ω − α(+h+ U(Mσ0 −mσz)/2)
. (S12)

Expressions for arbitrary states

For an arbitrary state |ψ⟩, we can always expand it in
terms of eigenstates of H . In this Ising limit, it is easy
to prove that no crossing propagators for ⟨⟨S+[ti]S

−[tf ]⟩⟩
and ⟨⟨S−[ti]S

+[tf ]⟩⟩. Therefore, for any other states
|ψ(M, m, ∆m)⟩ as given below,

|ψM,m,∆m⟩ = a| ↑↓⟩+ b| ↓↑⟩+ c| ↑↑⟩+ d| ↓↓⟩, (S13)

where

M = c2 − d2, m = a2 − b2,

∆m =
√
⟨m̂2⟩ =

√
a2 + b2. (S14)

We find that the arbitrary Gαα′

B(F ),para can be constructed as

Gαα′

B(F ),S,para =

a21GB(F ),S,M=1,m=0 + a22GB(F ),S,M=−1,m=0

+ a23GB(F ),S,M=0,m=1 + a24GB(F ),S,M=0,m=−1,

(S15)

where para = (M,m,∆m) is the complete parameter set
that describes the underlying state. With Eq. (S15), we can
plug the GB(F ),S back into the SEoM to obtain solutions for
the vertex functions.

To prepare for the perturbation calculation of transverse
field, we write down the explicit expressions for arbitrary
states with physical parametrization (use (M, m, ∆m) in-
stead of ais).

First, the solution for real ais is not unique. For later pur-
pose, here we pick a solution that gives us a positive and uni-
form ⟨Sx⟩:

a1 =

√
1 +M −∆m2

2
, a2 =

√
1−M −∆m2

2
, (S16)

a3 =

√
m+∆m2

2
, a4 =

√
∆m2 −m

2
, (S17)

which gives

⟨Sx
a ⟩ = ⟨Sx

b ⟩ = 1/2(
√

∆m2 +m
√
1−∆m2 −M

+
√
∆m2 −m

√
1−∆m2 +M).

(S18)

Now we can write Eq. (S15) as

Gαᾱ′

B(F ) =
1

2

(
(1−∆m2)(Gαᾱ′

B(F ),S,(1,0) +Gαᾱ′

B(F ),S,(−1,0))

+M(Gαᾱ′

B(F ),S,(1,0) −Gαᾱ′

B(F ),S,(−1,0))

+m(Gαᾱ′

B(F ),S,(0,1) −Gαᾱ′

B(F ),S,(0,−1))

+ ∆m2(Gαᾱ′

B(F ),S,(0,1) +Gαᾱ′

B(F ),S,(0,−1))
)
,

(S19)

where (M,m) denotes the base states parameters.

The Gαα′

B(F ) for arbitrary state with parameters
(M, m, ∆m) read

Gαᾱ
B,S,0[ω] =

α((1−∆m2)σ0 +mσz)(ω + αh) + (M + α∆m2)Jσ0/2

(ω + αh)2 − U2/4
, (S20)

Gαᾱ
F,S,0[ω] =

(ω + αh)σ0 + α(Mσ0 −mσz)J/2

(ω + αh)2 − U2/4
. (S21)

Weiss mean-field approximation to the hopping term of the
slave spin Hamiltonian

In this part, we solve HS,eff for finite doping at the mean-
field level. The mean-field approximation is to decouple
HS,hopping as

HS,hopping → HS,hMF

= −Qf

∑
is

(
(
∑
⟨ij⟩s′

⟨S−
js′⟩)S

+
is + h.c.

)
, (S22)

Since the emergence of ⟨S±
is⟩ ≠ 0 is from spontaneous-

symmetry-breaking, we can choose the direction of the mag-
netization at our convenience: ⟨S+

is⟩ = ⟨S−
is⟩ = ⟨Sx

is⟩ = Mx.
On a 2D square lattice with only nearest neighbor (nn) hop-
ping, HS,MF becomes

HS,MF = HS,at +HS,hMF

=
∑
i

(
USz

iaS
z
ib + h(Sz

ia + Sz
ib)− hx(S

x
ia + Sx

ib)
)
, (S23)
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where hx = DMxQf , D = 4 is the number of nn bonds for
a two dimensional square lattice. This is a local Hamiltonian
and can be solved by exact diagonalization. Here we adopt an
alternative analytic calculation using a perturbation theory in

terms of the Green’s functions.
The corresponding HEoM reads

−i∂tSα
s = α(USz

s̄S
α
s + hSα

s + hxS
z
s ), (S24)

and hence the SEoM becomes

−i∂tiGαᾱ′

B,S,ss′ [i, f ] = α
(
2⟨Sz

s ⟩δαα′δss′δ[i, f ]− hGαᾱ′

B,S,ss′ [i, f ] + J Γzα;ᾱ′

B,S,s̄s;s′ [i, f ] + hxG
zᾱ′

B,S,s̄s′ [i, f ]
)
, (S25)

−i∂tiGαᾱ′

F,S,ss′ [i, f ] = δαα′δss′δ[i, f ] + α
(
−hGαᾱ′

F,S,ss′ [i, f ] + J Γzα;ᾱ′

F,S,s̄s;s′ [i, f ] + hxG
zᾱ′

F,S,s̄s′ [i, f ]
)
. (S26)

According to the result of diagonalization, we know that the
ground state is a singlet/triplet with the onset of an infinitesi-
mal transverse field.

The effects of the perturbation term are twofold: i) modi-
fying the ground state wavefunction(s); ii) altering the evolu-
tion of the states (altering the SEoM). So we first consider the
change in wavefunction, which gives G0 with renormalized
parameters. Then we consider the revised SEoM hence the
further correction to G’s and Γ’s.

In the presence of a transverse field hxx̂, a magnetization
Mx,s along the field direction is induced. Now with the new
correlators Gzᾱ′

B(F ) entering the SEoM, we need to consider
their HEoM and SEoM as well. The HEoM of Sz

s reads

−i∂tSz
s = ihxS

y
s =

hx
2
(S+

s − S−
s ), (S27)

which leads to the following SEoM in frequency space

ωGzᾱ′

B [ω] =
1

2
(α′Ix + hx

∑
α

αGαᾱ′

B [ω]), (S28)

ωGzᾱ′

F [ω] =
hx
2

∑
α

αGαᾱ′

F [ω], (S29)

where Ix = Mxσ0 since ⟨[Sz
s , S

ᾱ′
s′ ]⟩ = α′δss′⟨Sᾱ′

s ⟩ =
α′δss′⟨Sx

s ⟩ and the second equal sign is because we apply a
uniform field along x̂.

Note that

⟨Sx
s ⟩ = −i⟨[Sz

s , S
y
s ]⟩ =

1

2i
(Gz+

F [i, i]−Gz−
F [i, i])

=−
∫
dω

2π

hx
2iω

(G++
F,S,ss[ω] +G−−

F,S,ss[ω]

−G−+
F,S,ss[ω]−G+−

F,S,ss[ω]).

(S30)

To the lowest order, the latter two terms can be computed as

⟨Sx
s ⟩ =

∫
dω

2π

hx
2iω

(G−+
F,S,0,ss[ω] +G+−

F,S,0,ss[ω]), (S31)

where G−+
F,S,0,ss[ω] is the Green’s function without transverse

field in Eq. (S21).
The transverse magnetization, i.e. the quasiparticle weight,

the magnetization, i.e. the hole density, and ∆m2 correction,
to the lowest order in hx, are found to be

⟨Sx
a ⟩ ≃ hx

[
Uσ0 − 2hMσ0 + 2hmσz

U2 − 4h2

]
aa

, (S32)

M = 2⟨Sz
a⟩ ≃

−4hh2x
U(U2/4− h2)

, (S33)

δ∆m2 ≃ −h2x
U2/4− h2

. (S34)

which leads to Z = M2
x/2 ∝ δ by solving the self-

consistency equation hx = DMxQf . All are consistent with
the numerical calculations.

In our SEoM theory, the dynamical spin Green’s functions
of HS,MF can be written as

Gαᾱ′

B(F )[ω] ≃ Gαᾱ′

B(F ),S,0[ω] +Gαᾱ′

B(F ),S,1[ω], (S35)

where Gαᾱ′

B(F ),S,1[ω] is the lowest order correction of

Gαᾱ′

B(F )[ω] (other than the change in the wavefunction under
the evolution of H0).
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Gαᾱ′

B,S,1,ss′ [ω] =
α

ω + αh

(α′(U⟨Sx
s ⟩+ hx)Ix
2

+
Uhx
2ω

⟨Sx
s ⟩

∑
α′′

α′′Gα′′ᾱ′

B,S,0,s̄s′ [ω] +
h2x
2ω

∑
α′′

α′′Gα′′ᾱ′

B,S,0,ss′ [ω]
)
, (S36)

Gαᾱ′

F,S,1,ss′ [ω] =
α

ω + αh

(Uhx
2ω

Mx

∑
α′′

α′′Gα′′ᾱ′

F,S,0,s̄s′ [ω] +
h2x
2ω

∑
α′′

α′′Gα′′ᾱ′

F,S,0,ss′ [ω]
)
. (S37)

SPECTRAL FUNCTIONS IN k-SPACE

The rigorous spinon spectral function ρf [ω
′,k] =∑

k δ(µ
∗ + M2

xϵ(k) − ω′) does have k−dependence where
ϵ(k) is the bare dispersion given by the hopping tij .
Therefore, so does ρMF

d [ω,k]. But since ρ−+
B,Sss′ [ω] is

still strictly local, ρMF
d [ω,k] just splits into bands deter-

mined by the poles of ρ−+
B,Sss′ [ω] according to ρd[ω,k] =

∫
dω′(

∑
ss′ δ(ω+ω

′−ωi)Wi)ρf [ω
′,k] =

∫
dω′(

∑
ss′ δ(ω+

ω′ − ωss′,i)Wss′,i)δ(M
2
xϵ(k) − ω′) =

∑
ss′ δ(ω + (µ∗ +

M2
xϵ(k)) − ωss′,i)Wss′,i. Here ωss′,i are the poles, Wss′,i

are their corresponding spectral weights and µ∗ = −h− µ is
the Lagrangian multiplier for fixing the spinon density. In our
perturbative regime, both M2

x and µ∗ are significantly smaller
than the spacing between poles. Hence, these bands will not
mix and each carries a uniform weight Wss′,i.
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