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-0.483 -0.110 0.069 -0.017 0.239
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4 ε x εz

0.005 -0.635 -0.034 0.776 0.409

TABLE I. Tight-binding hopping parameters in the main text Eq. (1)
H(k) (unit here is eV). ε x, εz are site energies for Ni−dx2−y2 , d3z2−r2

orbitals, respectively.
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ψS -0.483 -0.110 0.069 -0.017 0.205 0.781 -0.226
ψA -0.483 -0.110 0.069 -0.017 0.273 0.771 1.044

TABLE II. Tight-binding hopping parameters in ψS and ψA respec-
tively.

Tight-binding parameters

The tight-binding hopping parameters for the bilayer two-
orbital model in Eq. 1 of the main text are obtained from
Ref.[1, 2]. Their parameters are listed in Tab.I.

Using the ψS and ψA orbitals, the H(k) is block-diagonized
into

HT B(k) =

 HS (k) 0
0 HA(k)

 (1)

And HS (k), HA(k) take the same structure of Ht(k)

HS/A(k) =

 T x
k Vk

Vk T z
k

 , (2)

with T x/z
k = tx/z

1 γk + tx/z
2 αk + ε x/z,Vk = txz

3 βk. Their parameters
are listed in Tab.II.

For the fitting of the β band, we use up to the third nearest
neighbor hopping in the TB model on the square lattice tγk +

t′αk + t′′γ2k. The parameters are t = 0.288, t′ = −0.0746,
t′′ = 0.04.

The coupled Hamiltonian for ψA and ψS

As described in the main text, the coupled Hamiltonian for
ψA and ψS can be written as HMF

β +HMF
S +HS AS , where HMF

β is
the mean-field Hamiltonian defined in Eq. (6) for the β band.

The HS AS is the coupling between two sectors in Eq. (7). The
symmetric ψS sector is described by a two-band model with
the exchange interaction,

HS =
∑

i j

tη,η
′

i j ψ†η,iσψη′, jσ +
∑
〈i j〉

J(Si · S j −
1
4

nin j) (3)

Here tη,η
′

i j are the hopping parameters in HS (k). The mean-field
Hamiltonian HMF

S follows from decoupling the exchange in-
teraction into the two-orbital pairings and bonds as in Eq. (6).
Notice that the band renormalization factors in tη,η

′

i j are ignored
because the ψS bands are heavily doped away from half-filling
individually.

Hubbard Interactions in ψS and ψA

In this section, we discuss the interactions between ψS and
ψA. Although the inversion symmetry blocks the hopping be-
tween ψS and ψA, the Coulomb interactions between them are
nonzero and take a multiorbital form. More precisely, the lo-
cal Hubbard interactions can be written as

HI = U
∑
i,η

n̂i,η↑n̂i,η↓ + U′
∑

i,η,η′
n̂i,ηn̂i,η′

− JH

∑
i,η,η′

(Siη · Siη′ + d†i,η↑d
†

i,η↓di,η′↑di,η′↓)
(4)

where the η is the orbital index.
Since the β band mainly carries the dx2−y2 character, we will

simply use the dx2−y2 for ψβ. Hence, the interaction between
dA

x and dS
x coming from the intra-orbital Un̂i,η↑n̂i,η↓ takes the

form

HA,S
I = U0

∑
i,α

n̂αi,↑n̂
α
i,↓ + Uv

∑
i,α,α′

n̂αi,↑n̂
α′

i,↓

− J
∑

i,α,α′
(dα†i,↑d

α′†
i,↓ dα

′

i,↑d
α
i,↓ + dα†i,↑d

α†
i,↓d

α′

i,↑d
α′

i,↓),
(5)

where α = S , A and U0 = Uv = J = U
2 .

In the same spirit, we can decouple the inter-orbital interac-
tion into a similar form. For example, the interaction between
dA

x and dS
z comeing from U′n̂i,ηn̂i,η′ takes the form

HA,S
I2 = U0

∑
i,α

n̂αi,xn̂αi,z + Uv

∑
i,α,α′

n̂αi,xn̂α
′

i,z

− J
∑

i,α,α′
(dα†i,x dα

′†

i,z dα
′

i,xdαi,z + dα†i,x dα†i,z dα
′

i,xdα
′

i,z)
(6)
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FIG. 1. (a) FSs of ψS at U = 0 (black lines) and U = 8 eV (red lines).
(b) FSs of β band at U = 0 (black lines) and U = 8 eV (red lines).

with α = S , A and U0 = Uv = J = U′
2 . The Hund’s rule

interaction JHSix · Siz transforms into

HA,S
I3 = −J0

∑
i

(SS
ix + SA

ix) · (SS
iz + SA

iz) (7)

−J0

∑
i,α,α′

(dA†
ixσdS

ixσ′ + dS †
ixσdA

ixσ′ )Ŝσσ′ · Ŝσ′σ(dA†
izσ′d

S
izσ + dS †

izσ′d
A
izσ)

with J0 = JH
2 . Collecting all the terms, the symmetry allowed

local interactions are just the multi-orbital Hubbard model
with the effective orbitals including with both the atomic or-
bitals and the molecular symmetric-antisymmetric sector in-
dex. The inter-sector interactions are crucial and produce the
inter-sector exchange interaction. As we discussed in previous
works [3, 4], the inter-sector spin-orbital exchange interaction
generates the effective Josephson coupling between the pair-

ing order parameters,

HS AS = JS A(∆̂†S x∆̂β + ∆̂
†

S z∆̂β + h.c.) (8)

Finite-U Gutzwiller approximation

An important aspect of our theory is the doping concentra-
tion for the antisymmetric β band and the symmetric α and β
bands. In the main text, we used the results of the DFT cal-
culations, which are reproduced in the TB model. However,
the strong local correlation can in principle generate inter-
orbital and inter-sector charge transfer among the ψA and ψS

bands by renormalizing the effective crystal fields. To this
end, we carried out a finite-U multiorbital Gutzwiller approx-
imation calculation [3, 4], including all four bands relevant for
LNO. The results of the renormalized FSs are shown in Fig.
1 for the Hubbard interaction U = 8eV and Hund’s coupling
JH =0.1U and compared to the noninteracting case. Clearly,
the correlation-induced charge transfer is weak as indicated
by the small changes in the sizes of the FSs for correlation
strength up to U = 8eV, providing support for the results dis-
cussed in the main text.
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