Energy Levels and Transition Rates for Laser Cooling Os⁻ and a General Approach to Produce Cold Atoms and Molecules

Yuzhu Lu¹, Rui Zhang¹, Changxian Song², Chongyang Chen², Ran Si^{2,*}, and Chuangang Ning^{1,3,†}

¹ Department of Physics, State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua

University, Beijing 100084, China

³ Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China

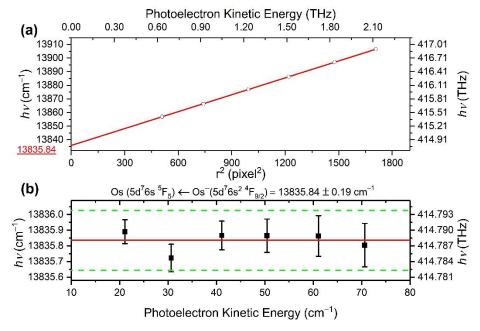


Fig. S1. (a) The photon energy hv versus the squared radius r^2 for the photodetachment channel l. r is the radius of the photoelectron shell. The solid line is the linear least squares fitting. The intercept 13835.84 cm⁻¹ (414.7880 THz) is the binding energy (BE) of transition l via the equation BE = $hv - \alpha r^2$. Here α is the energy calibration coefficient. (b) The uncertainty of the binding energy of Os ${}^5F_5 \leftarrow \text{Os}^{-4}F_{9/2}$ versus the kinetic energy of the photoelectrons

² Shanghai EBIT Lab, Key Laboratory of Nuclear Physics and Ion-Beam Application (MOE), Institute of Modern Physics, Department of Nuclear Science and Technology, Fudan University, Shanghai 200433, China