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THE TRANSMISSION IN TERMS OF NORMAL MODES

From the motion equation MẌ + KX = 0, we know that the amplitude X of the normal mode satisfies ω2MX = KX. 
Let U = M 12 X, then we can get ω2U = M− 12 KM− 12 U which satisfies

FΩ2F⊤ = M− 1
2KM− 1

2 , (S1)

where eigenmatrix Fji = eij and eigenfrequencies Ωii = ωi.
Define R = Ω2 − ω2I and Z ′ = Z +Σ(ω) = K − ω2M where Z ′∗

1N = Z∗
1N and I is identity matrix, then we obtain

Z ′ = M
1
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1
2 . Thus Z∗

1N = Det(MR)(M− 1
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2 )1N . Then one can find
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S1 = 0, (S2)

where S1 is given by
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Next, we simplify Det(Z). Due to the property of determinant, one has Det(Z) = Det(MF⊤M− 1
2ZM− 1

2F ) and
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2F = R+A+B, (S4)

where A = −i γL
m1

F⊤
(1,:)F(1,:), B = −i γR

mN
F⊤
(N,:)F(N,:). The F(i,:) means taking the ith row of matrix F as a vector.

Since R is a diagonal matrix and the rank of matrices A and B is 1, one can find

Det(R+A+B) = Det(R)
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It results in

Det(Z) = Det(MR)(1− iωS3 − ω2S2), (S6)

where S2 and S3 is given by
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So far we have obtained Z∗
1N and Det(Z). Finally, in terms of G1N = Z∗

1N/Det(Z) and T (ω) = 4γLγRω
2 |G1N |2 ,

one can get the transmission with respect to the normal mode as given by

T (ω) =
4ω2S2

1
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3

. (S8)
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