Supplemental Materials for

Superexchange interactions and magnetic anisotropy in MnPSe₃ monolayer

Guangyu Wang,^{1, 2, *} Ke Yang,^{3, 1, *} Yaozhenghang Ma,^{1, 2} Lu Liu,^{1, 2} Di Lu,^{1, 2}, Yuxuan Zhou,^{1, 2} and Hua Wu^{1, 2, 4, †}

¹Laboratory for Computational Physical Sciences (MOE), State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433, China ²Shanghai Qi Zhi Institute, Shanghai 200232, China

³ College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China

⁴ Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China

* These authors contributed equally to this work. [†]E-mail: wuh@fudan.edu.cn

I. The magnetic exchange parameters

The value of J = 1.41 meV in the main text is obtained by considering only the first nearest neighboring magnetic coupling, i.e., the spin Hamiltonian is given by

$$H = \sum_{i,j} \frac{J}{2} \vec{S}_i \vec{S}_j + \sum_i \{ D(S_i^c)^2 + E_n[(S_i^b)^2 - (S_i^a)^2] \}$$

where D and E_n are the magnetic anisotropy parameters. In this case, the calculated magnetic specific heat from our Monte Carlo simulations shows $T_N = 47$ K, which agrees well with the experimental 40 K.

We also compute the 1st, 2nd, and 3rd nearest neighboring magnetic couplings J_1 , J_2 and J_3 , using the supercells and four different magnetic states in Figs. S1 and S2. The spin Hamiltonian in this case is given by

$$H = \sum_{k=1,2,3} \sum_{i,j} \frac{J_k}{2} \vec{S}_i \vec{S}_j + \sum_i \left\{ D(S_i^c)^2 + E_n \left[\left(S_i^b \right)^2 - (S_i^a)^2 \right] \right\}.$$

Counting JS^2 for each spin pair, the magnetic exchange energies (per formula unit) of the four magnetic states are written as follows

$$E_{FM} = (\frac{3}{2}J_1 + 3J_2 + \frac{3}{2}J_3)S^2$$
$$E_{Neel} = (-\frac{3}{2}J_1 + 3J_2 - \frac{3}{2}J_3)S^2$$
$$E_{Stripy} = (-\frac{1}{2}J_1 - J_2 + \frac{3}{2}J_3)S^2$$
$$E_{Zigzag} = (\frac{1}{2}J_1 - J_2 - \frac{3}{2}J_3)S^2$$

The relative total energy results are shown in Table S1. Using those values and the above equations, we can calculate $J_1 = 0.88$ meV, $J_2 = 0.08$ meV, and $J_3 = 0.54$ meV.

Table S1. Relative total energies $\Delta E \text{ (meV/fu)}$ for MnPSe₃ monolayer by GGA+U. The calculated three AF exchange parameters (meV) are listed.

States	FM	AF-Néel	AF-Stripy	AF-Zigzag
ΔE	26.4	0	13.6	9.0
$J_1 = 0.88$		$J_2 = 0.08$	$J_3 = 0.54$	

In the honeycomb structure of MnPSe₃ monolayer, the joint contribution of J_1 and J_3 ($J_1 + J_3 = 1.42$ meV) is equivalent to the exchange parameter J = 1.41 meV in the main text. With inclusion of the small J_2 but its higher six-coordination than three-coordination for J_1 and J_3 , T_N is somewhat increased to 53 K, from 47 K according to the Monte Carlo simulation using J = 1.41 meV in the main text. Nevertheless, either 47 K or 53 K is in reasonable agreement with the experimental 40 K. Therefore, for the convenience of discussion, we assume the AF exchange parameter is 1.41 meV, as mentioned in the main text.

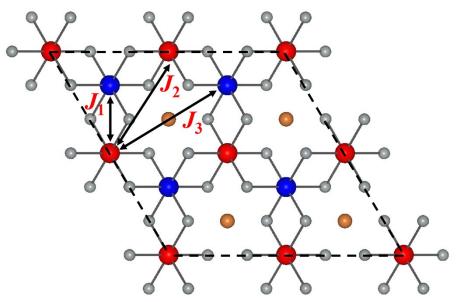


Fig. S1: The first (J_1) , second (J_2) and third (J_3) nearest neighbor exchange interactions.

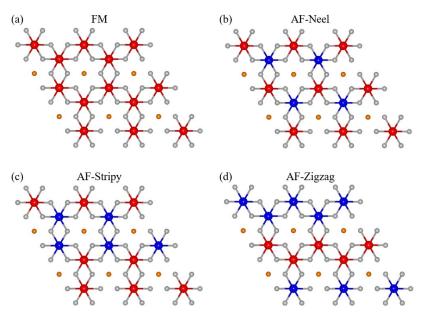


Fig. S2: Four different magnetic structures: (a) FM, (b) AF-Néel, (c) AF-Stripy, and (d) AF-Zigzag. Up (down) spins are represented by red (blue) balls.

II. Hopping integrals of spin-up channels

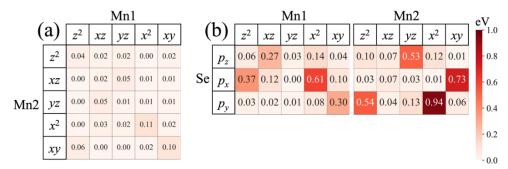


Fig. S3: (a): Hopping integrals of spin-up channels calculated by MLWFs basis set between 3d orbitals of Mn1 and Mn2. (b): Hopping integrals of spin-up channels between 3d orbitals of Mn and 4p orbitals of Se.

III. The distributions of MAE in the reciprocal space in the FM state

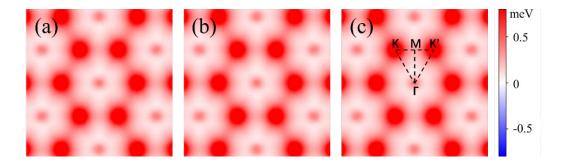


Fig. S4: The distributions of MAE in the reciprocal space in the FM MnPSe₃ monolayer. (a): $E^c - E^a$, (b): $E^{-c} - E^{-a}$, (c): $((E^c - E^a) + (E^{-c} - E^{-a}))/2$.

IV. Polar diagrams of MAE

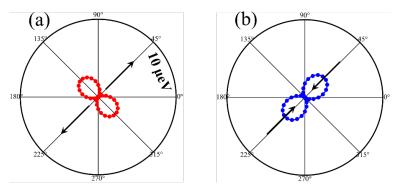


Fig. S5: (a): Polar diagrams of the MAE in the *ab* plane. The MnPSe₃ monolayer is under 2% uniaxial tensile strain with strain direction along 45° with respect to the *a* axis. (b): MnPSe₃ monolayer is under 2% uniaxial compressive strain with strain direction along 45° with respect to the *a* axis.

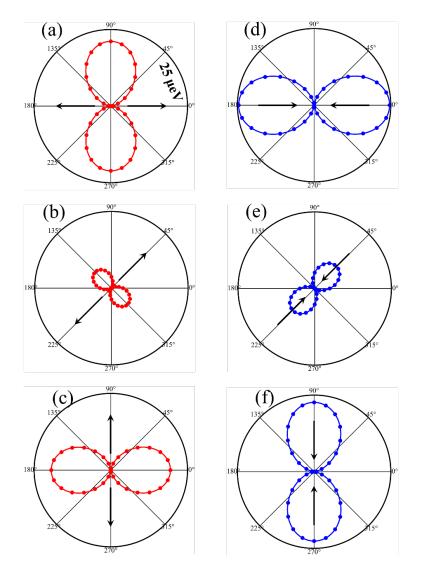


Fig. S6: Polar diagrams of the MAE in the *ab* plane. The MnPSe₃ monolayer is under 5% uniaxial tensile strain (a-c) and compressive strain (d-f).