Supplemental Materials for

Superexchange interactions and magnetic anisotropy in MnPSe₃ monolayer

Guangyu Wang,^{1, 2,*} Ke Yang,^{3, 1,*} Yaozhenghang Ma,^{1, 2} Lu Liu,^{1, 2} Di Lu,^{1, 2}, Yuxuan Zhou,^{1, 2} and Hua $Wu^{1, 2, 4, \dagger}$

¹ Laboratory for Computational Physical Sciences (MOE), State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433, China 2 Shanghai Qi Zhi Institute, Shanghai 200232, China

³ College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China

4 Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China

* These authors contributed equally to this work. † E-mail: wuh@fudan.edu.cn

I. The magnetic exchange parameters

The value of $J = 1.41$ meV in the main text is obtained by considering only the first nearest neighboring magnetic coupling, i.e., the spin Hamiltonian is given by

$$
H = \sum_{i,j} \frac{1}{2} \vec{S}_i \vec{S}_j + \sum_i \{ D(S_i^c)^2 + E_n [(S_i^b)^2 - (S_i^a)^2] \}
$$

where D and E_n are the magnetic anisotropy parameters. In this case, the calculated magnetic specific heat from our Monte Carlo simulations shows $T_N = 47$ K, which agrees well with the experimental 40 K.

We also compute the 1st, 2nd, and 3rd nearest neighboring magnetic couplings J_1, J_2 and *J*3, using the supercells and four different magnetic states in Figs. S1 and S2. The spin Hamiltonian in this case is given by

$$
H = \sum_{k=1,2,3} \sum_{i,j} \frac{J_k}{2} \vec{S}_i \vec{S}_j + \sum_i \left\{ D(S_i^c)^2 + E_n \left[\left(S_i^b \right)^2 - (S_i^a)^2 \right] \right\}.
$$

Counting *JS*² for each spin pair, the magnetic exchange energies (per formula unit) of the four magnetic states are written as follows

$$
E_{FM} = \left(\frac{3}{2}J_1 + 3J_2 + \frac{3}{2}J_3\right)S^2
$$

\n
$$
E_{Neel} = \left(-\frac{3}{2}J_1 + 3J_2 - \frac{3}{2}J_3\right)S^2
$$

\n
$$
E_{stripy} = \left(-\frac{1}{2}J_1 - J_2 + \frac{3}{2}J_3\right)S^2
$$

\n
$$
E_{zigzag} = \left(\frac{1}{2}J_1 - J_2 - \frac{3}{2}J_3\right)S^2
$$

The relative total energy results are shown in Table S1. Using those values and the above equations, we can calculate $J_1 = 0.88$ meV, $J_2 = 0.08$ meV, and $J_3 = 0.54$ meV.

Table S1. Relative total energies ΔE (meV/fu) for MnPSe3 monolayer by GGA+*U*. The calculated three AF exchange parameters (meV) are listed.

States	FM	AF-Néel	AF-Stripy	AF-Zigzag
٨F	26.4			
$J_1 = 0.88$		$J_2 = 0.08$	$J_3 = 0.54$	

In the honeycomb structure of MnPSe₃ monolayer, the joint contribution of J_1 and J_3 $(J_1 + J_3 = 1.42 \text{ meV})$ is equivalent to the exchange parameter $J = 1.41 \text{ meV}$ in the main text. With inclusion of the small J_2 but its higher six-coordination than threecoordination for J_1 and J_3 , T_N is somewhat increased to 53 K, from 47 K according to the Monte Carlo simulation using $J = 1.41$ meV in the main text. Nevertheless, either 47 K or 53 K is in reasonable agreement with the experimental 40 K. Therefore, for the convenience of discussion, we assume the AF exchange parameter is 1.41 meV, as mentioned in the main text.

Fig. S1: The first (J_1) , second (J_2) and third (J_3) nearest neighbor exchange interactions.

Fig. S2: Four different magnetic structures: (a) FM, (b) AF-Néel, (c) AF-Stripy, and (d) AF-Zigzag. Up (down) spins are represented by red (blue) balls.

II. Hopping integrals of spin-up channels

Fig. S3: (a): Hopping integrals of spin-up channels calculated by MLWFs basis set between 3*d* orbitals of Mn1 and Mn2. (b): Hopping integrals of spin-up channels between 3*d* orbitals of Mn and 4*p* orbitals of Se.

III. The distributions of MAE in the reciprocal space in the FM state

Fig. S4: The distributions of MAE in the reciprocal space in the FM MnPSe₃ monolayer. (a): $E^{c} - E^{a}$, (b): $E^{-c} - E^{-a}$, (c): $((E^{c} - E^{a}) + (E^{-c} - E^{-a}))/2$.

IV. Polar diagrams of MAE

Fig. S5: (a): Polar diagrams of the MAE in the *ab* plane. The MnPSe₃ monolayer is under 2% uniaxial tensile strain with strain direction along 45° with respect to the *a* axis. (b): MnPSe₃ monolayer is under 2% uniaxial compressive strain with strain direction along 45° with respect to the *a* axis.

Fig. S6: Polar diagrams of the MAE in the *ab* plane. The MnPSe₃ monolayer is under 5% uniaxial tensile strain (a-c) and compressive strain (d-f).