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1. Scanning electron microscope (SEM) image of Device A

For both types of devices, the superconducting electrodes (S) are fabricated using standard electron-beam
lithography followed by electron-beam evaporation of Al (~80 nm). The normal electrodes (N) are fabricated
by selectively etching away the Al layer prior to a direct deposition of Ti/Au (8 nm/80 nm) using a double-
layer resist. Short junctions less than 50 nm between N and the superconducting nanowire (SNW) can be
realized by utilizing the undercut structure of the double-layer resist and such one-step fabrication process.

= 100 nm

Fig. S1. (a) SEM image of Device A. The corresponding schematic diagram is shown in Fig. 1(a) in the main
text. (b, ¢c) Zoom-in of the green and red box area in (a), respectively. The left junction segment is ~10 nm, and
the right is ~14 nm.

2. Additional data on device A

This section shows additional data on device A.
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Fig. S2. Additional data on Device A for electrodes III-1I at larger barrier strength. (a) The differential
conductance dI/dV as a function of bias voltage V and back-gate voltage V4 for electrodes III—I. (b) The

differential conductance d//dV linecut at Vs =

—2.5V. A hard gap!!! can be inferred from the ratio between

the normal and superconducting state conductance, Gy /Gs~90.
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Fig. S3. (a-c) The measured dI /dV spectroscopy in the voltage-driven mode (sweeping voltage) for electrodes
-1, HI-II and I-1I, respectively. (d-f) The measured dV /dI spectroscopy in the current-driven mode
(sweeping current) for electrodes I1I-1, III-II and I-1I, respectively. (a, b, d) The same as Fig. 1(b), Fig. 1(d),
and Fig. 2(a), respectively. For clarity and a direct comparison, we plot these three figures here again.
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Fig. S4. The result of transforming d//dV [Fig. 1(b) in main text, i.e., Fig. S3(a)] to dV/dI. I is calculated by
[(d1/dV)dV. The transformed dV /dI peaks from the voltage-driven measurement show the same behavior
as the current-driven measurement, i.e., Fig. S3(d).



3. Additional data on device B
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Fig. S5. (a) The measured dI/dV spectroscopy in the voltage-driven mode for device B. The differential
conductance dip disappears at Vg ~ —8 V. (b) The result of transforming dI/dV in (a) to dV/dI. (c) The
measured dV /dI spectroscopy in the current-driven mode. (d) 2D dI/dV map showing the evolution of the dip
in magnetic field at V},g = —2 V. The conductance jump near zero magnetic field is caused by the quench of

evaporated Al

4. Details of the theoretical simulation

As explained in the main text, the transport of our semiconductor-superconductor hybrid devices is described
by the BTK-supercurrent model. According to the BTK theory!?], the normal metal-superconductor (NS)
interface potential barrier is assumed to be a one-dimensional delta function Vyg = V8 (x). When a voltage is
applied, the current could be calculated as

1= 2N()eveS [Zfo(E — V) = fo(E)] [1 + A(E) — B(E)]dE,
where N(0) is the density of states at the Fermi level, S is the effective area of the NS interface, f; is Fermi-

Dirac distribution function, f,(E —eV) = [1 + exp (%)]_1, kg is Boltzmann constant, 7 is temperature.
B

2,2
A(E) is the probability of Andreev reflection, A = toVo /}/2’ and B(E) is the probability of normal electron
2 _ ,2\272 2
reflection, B = (%0 ~v0)*Z°(1+2 )/y2 , where uf = 1—vd = 2 (1+ [(E? — A/ED)]Y?), y? = [u +
Z?(u3 — v8)]?, and Z = V,/hvg is a dimensionless parameter that represents the barrier strength. When Z = 0,
the barrier is transparent and A = 1. The differential conductance of the NS interface can be written as



ar +o0 dfp(E—e )
== 2N(0)eveS [ aev)

Considering the inelastic scattering of the interface, the Bogoliubov coherence factors uy and vy need to be

rewritten as
2 _ 1 (E+iF)Z—A2 _ 2
us=-1++—=—|=1—-v
072 [ T ar | 0>

where I is the strength of inelastic scattering, I' = A/T, T is the lifetime of the quasiparticles. When I' = 0, no
inelastic scattering occurs at the NS interface. However, with the increase of I', the broadening of the Andreev
peak increases and the intensity decreases. The experimental data in the superconducting energy gap can be
simulated well by using parameters: T, A, T, Z, RYx. The resistance Ry is the Rgr at high-bias voltage
used to match the real resistance in the data.

[1+ A(E) — B(E)]dE.

However, the NDCs and the differential conductance dips cannot be simulated by BTK model. Therefore, we
add the external supercurrent part on the basis of BTK model, mainly considering the critical supercurrent
effect of SNW (superconducting nanowire), and we call it the BTK-supercurrent model. Assuming that Rg is
the resistance of the SNW, when the SNW is superconducting, Rg- = 0; when the current [ is greater than the
critical supercurrent I, Rgc = R}, (the normal-state resistance of the SNW). The I — V function of the SNW
part can be written as Vg = RN../I% — 12 Bl. Considering the finite temperature and disorder, I + iy, is used to

replace I to adjust the broadening near the critical supercurrent, and thus Vg = RN.\/(I + iy,)? — IZ. The total
resistance can be written as: R;,; = Rgrx + Rsc. Taking the parameters of the superconductor part, i.e., I, R,
Y¢, into account, and combining with the BTK parameters, T, A, T, Z, RY7x, we can simulate our experimental
results.

For Fig. 4(g) in the main text, some parameters are rewritten as a function of Vg to simulate the variation trend
with V},o. Since we cannot determine the exact relations between these parameters and Vg, we just assume
function forms phenomenologically, as shown in Table 1.

Part: Rgtk Part: Rsc
I' (meV) 0.03 I. (nA) 0.3 EXp(ng) +0.4
A (meV) 0.46
T (K) 0.03 RY. (h/e?) 03
Z 2/(Vog +4)
RYrk (h/e?) 1/ exp(ng — 1) Yc (nA) 0.008 = EXp(l — ng)

Table 1: Parameters used for Fig. 4(g) in the main text.

Using our BTK-supercurrent model, the three curves in Fig. 1(c) in the main text can be simulated well, as
shown in Fig. S6 (see Table 2 for corresponding parameters).
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Fig. S6. Simulation of the experiment data shown in Fig. 1(c) in the main text. The measured dI/dV vs.V
curves at Vg = 2V, 1V, —1V correspond to the black, red, blue linecuts, respectively. The green lines are the
simulation results using our BTK-supercurrent model.

Part: Rgtk Part: Rgc
Parameters |I' (meV) |4 (meV) | T (K) Z RN:x (h/e?) | I. (mA) | RY; (h/e?) |y, (nA)
Vpg=2V 0.03 0.46 0.03 0.4 0.96 120 0.2 0.002
Vg =1V 0.03 0.47 0.03 0.48 1.16 103 0.2 0.018
Vpg=—-1V 0.03 0.475 0.03 0.64 1.78 90 0.2 0.03

Table 2: Parameters used for Figs. S6(a-c).

5. The effect on the NDC of the ratio between RNt and RY;

As we mentioned in the main text, the depth of the NDC decreases with the increase of Rk, and increases
with the increase of RY.. Here, we discuss how the ratio between Ry and R affects the evolution of the
NDC. As shown in Fig. S7(a), for a fixed RN;x /RN = 2, however, when Ry and RY increase proportionally,
the depth of the NDC presents a very big difference. For RYr/RSc = 4, as shown in Fig. S7(b), a similar
behavior is present. If we compare the curves with the same color, i.e., the same Ry, the depth of the NDC is
less in Fig. S7(b) than that in Fig. S7(a). Therefore, the NDC is not only determined by the ratio between RQTK

and RY., but the size of Ryrk and R also plays a role.

Note that RYrx not only affects the depth of the NDC, but also changes the corresponding bias position of the
NDC, as shown in Fig. S7(c). When RY: is fixed at 0.5 h/e?, with the increase of the ratio between Ry and
R, the depth of the NDC decreases, and the NDC moves to higher |V| simultaneously. When RN is fixed,
with the increase of the ratio, the depth of the NDC increases, and the position of the NDC does not change, as

shown in Fig. S7(d). In a word, the evolution of the NDC is a function of RYrx and R, not only of the ratio.
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Fig. S7. (a, b) Simulation results for a ratio between Ryx and RY: of 2 and 4, respectively. Black, red and blue

lines correspond to different RNy and R3 (in unit of h/e?). (c, d) Simulation results for fixed Rk and R,

respectively. The rest simulation parameters of the four figures are: I' = 0.03 meV, A = 0.46 meV, T = 0.03 K,

Z =0.4,1,=1201A,y, = 0.002 nA.
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