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Optimization of FAMPS

We use a one dimensional representation of FAMPS
(as shown in Fig. 1 (c) in the main text) to illustrate the
optimization steps. The optimization process of FAMPS
is similar as MPS which consists of the calculation of en-
vironment tensors and the solving of an eigenvalue prob-
lem. The difference is that in FAMPS the calculation
of environment is more involved because of the disentan-
gler layer. Here, we consider a Hamiltonian which only
contains two-site operators,

H =
∑
ij

hij (1)

We first discuss the optimization of the tensors of MPS.
Because disentanglers cannot share the same site, each
term of H is mostly connected to two disentanglers.
Thus, after the application of disentanglers, any two-site
operator hij connects with at most four sites

h′ij = D(u)†hijD(u) = u†iku
†
jlhijuikujl = Oijkl (2)

where D(u) =
∏

m um represents the disentangler layer.
Other disentanglers not acting on sites i, j are annihilated
due to u†u = I. The Hamiltonian H becomes

H ′ = D(u)†
∑
ij

hijD(u) =
∑
ij

h′ij (3)

where h′ij is at most a four-site operator. So, a FAMPS
with a Hamiltonian H is transformed to an MPS with an
effective Hamiltonian H ′. More specifically,

〈FAMPS|H|FAMPS〉 = 〈MPS|D(u)†HD(u)|MPS〉
= 〈MPS|H ′|MPS〉 (4)

Thus, we can follow the procedures in MPS to optimize
MPS tensors in FAMPS. An environment of an MPS ten-
sor for a four-site operator is shown in Fig. 1 (a). The
contraction of it has a cost of O(D3). We need to cal-
culate the environment for each term in the Hamiltonian
H to get the overall environment.

For the optimization of disentanglers, we follow the
procedure shown in Ref. [1, 2] where the key step is
also the computation of environment. Here, after the
application of disentanglers, any two-site operator hij is
also at most a four-site operator

h′′ij =
∏
m

u†mhij
∏

m 6={ik}
um = u†iku

†
jlhijujl = O′ijkl (5)
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FIG. 1: (a) The environment for an MPS tensor. (b) The
environment for a disentangler. The contractions of (a) and
(b) can be performed with a computational cost of O(D3).
The black line denotes a four-site operator. The red lines are
the tensors to be optimized.

where uik is the disentangler we want to optimize. Fig. 1
(b) shows the corresponding environment for a disentan-
gler, which can also be contracted with a complexity of
O(D3). The overall environment only involves Hamilto-
nian terms which are directly attached to the disentangler
uik, which makes the optimization of disentanglers very
fast. All other Hamiltonian terms contribute a constant
term to the energy expectation value and are indepen-
dent of uik [1]. More specifically,

〈FAMPS|H|FAMPS〉 = 〈MPS|D(u)†HD(u)|MPS〉
= 〈MPS|

∑
p

h′′puik|MPS〉+ Cik

(6)

where p represents the Hamiltonian terms that act on uik
and Cik = 〈MPS|∑k h

′
k|MPS〉 with k the other Hamil-

tonian terms not acting on uik.

Overall, the optimization process of FAMPS is divided
into two steps: the optimization of disentanglers and the
optimization of the MPS tensors. For the optimization
of disentanglers, the procedure is described as follows.

(i) select a disentangler u, calculate the environments
for this disentangler from the Hamiltonian terms
that are directly attached to it, add them up to get
the overall environment E.
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(c)MPS 8× 8 SU(2)
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FIG. 2: Relative error of the ground state energy for FAMPS
and MPS of the Heisenberg model for lattice sizes 8 × 8 and
10×10 with open boundary conditions. Simulations in (a) and
(b) utilize U(1) symmetry and have a physical bond dimension
d = 2, while in (c) and (d), we use SU(2) symmetry and have
a physical bond dimension d = 4 by blocking two sites into
one site. We can find that by allowing more free parameters in
the disentanglers (in (c) and (d)), the critical bond dimension
problem (in (a) and (b)) is solved.

(ii) perform a Singular Value Decomposition (SVD) for
environment E = USV †, then calculate the opti-
mized disentangler unew = −V U†.

(iii) move to another disentangler and repeat (i) and (ii)
until all the disentangles are optimized once.

After optimizing the disentanglers for 3 ∼ 5 sweeps, we
move to the optimization of MPS tensors. The optimiza-
tion of MPS tensors follows the below steps.

(i) choose an MPS tensor T , set the tensor T as the
center tensor as in MPS optimization algorithm.

(ii) calculate the environments for this tensor T from
all the Hamiltonian terms and add them up to get
the overall environment.

(iii) use the Lanczos or similar algorithm to solve the
eigenvalue problem for tensor T. In this step, step
(ii) needs to be repeated for several times.

(iv) move to a next MPS tensor and repeat step (i), (ii)
and (iii) until all the MPS tensors are optimized.

Then, we repeat the process by optimizing disentanglers
and MPS tensors alternatively until the energy is con-
verged.

Critical Bond Dimension in FAMPS

As mentioned in the main text, in the study of Heisen-
berg model with open boundary conditions we encounter
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FIG. 3: To increase the number of free parameters in disen-
tanglers for the Heisenberg model, we block two sites linked
by green lines in (a) into one site.

the problem of critical bond dimension in FAMPS. The
results are shown in Fig. 2. In (a) and (b), we can find
that with the increase of bond dimension, there exist a
critical bond dimension after which the results of FAMPS
and MPS are identical. This phenomenon is related to
the absence of free parameters of disentanglers. For spin
1/2 degree of freedom, each site has physical dimension
d = 2 and can be labeled by quantum number {0, 1}.
Under U(1) symmetry, disentangler uklij can be written

as (we only consider real entries for uklij )

uklij = u0 ⊕ u1 ⊕ u2 (7)

where u1 is a 2× 2 matrix and u0, u2 are 1× 1 matrices
or numbers. Due to the unitary property of disentangler,
u20 = 1, u22 = 1, u†1u1 = I2×2. Thus, disentangler uklij can
be written as

uklij =± 1


1 0 0 0
0 sin θ cos θ 0
0 − cos θ sin θ 0
0 0 0 1

 (8)

Thus, disentangler uklij has only one free parameter under
U(1) symmetry. But under SU(2) symmetry, disentan-
gler uklij is written as (using the notation in Ref. [3])

uklij = (P0 ⊗Q0
1
2 ,

1
2→ 1

2 ,
1
2
) + (P1 ⊗Q1

1
2 ,

1
2→ 1

2 ,
1
2
) (9)

where P0, P1 are numbers, Q0
1
2 ,

1
2→ 1

2 ,
1
2

and Q1
1
2 ,

1
2→ 1

2 ,
1
2

are matrix determined by Clesch-Gordan coefficients,

which are


0 0 0 0
0 1/2 −1/2 0
0 −1/2 1/2 0
0 0 0 0

 and


1 0 0 0
0 1/2 1/2 0
0 1/2 1/2 0
0 0 0 1


respectively. Under the restriction of u†u = I, P 2

0 =
P 2
1 = 1, which leads to P0 = ±1, P1 = ±1. Thus, disen-

tangler uklij has no free parameter under SU(2) symmetry.
When considering Z(2) symmetry (in the transverse Ising
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FIG. 4: The distribution of the entanglement spectrum for the
Heisenberg model on a 10 × 10 lattice under open boundary
conditions. The bond dimension for both MPS and FAMPS
are D = 1000. The result for the FAMPS is for the underly-
ing MPS (without disentanglers). We can see that both the
entanglement entropy (EE) and truncation error (TE) are re-
duced in FAMPS.

model), disentangler uklij can be written as

uklij = u0 ⊕ u1 (10)

where u0, u1 are 2 × 2 matrix satisfying u†1u1 = u†2u2 =
I2×2. Then, disentangler uklij can be represented as

uklij =


sinα 0 0 cosα

0 sinβ cosβ 0
0 − cosβ sinβ 0

− cosα 0 0 sinα

 (11)

Here, disentangler uklij has two free parameters. Thus, in
Transverse Ising model, there is no critical bond dimen-
sion as shown in Fig. 2 in the main text.

For the U(1) symmetry imposed DMRG calculations
in Fig. 2 (a) and (b), SU(2) symmetry is nearly restored
after the critical bond dimension, which means the dis-
entanglers have no free parameter and FAMPS results
are identical to MPS ones. To solve this problem, we can
block two sites into one to enlarge the physical degrees of
freedom as shown in Fig. 3. In this way, we increase the
number of free parameters in the disentanglers. Fig. 2 (c)
and (d) show calculations with the same models in Fig. 2
(a) and (b). From Fig. 2, we can find that the FAMPS
results are always better than MPS results and there is
no critical bond dimension.

Comparison of the entanglement spectrum

In Fig. 4, we show the the distribution of the entan-

glement spectrum for the Heisenberg model on a 10× 10
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FIG. 5: A quadratic extrapolation of the FAMPS energy per
site of a 8 × 8 transverse Ising model with λ = 3.05 under
periodic boundary conditions. The fit gives an extrapolated
value of ground state energy per site E = −3.24165(1) which
agrees with the SSE QMC result −3.24163(1) within the error
bar.

lattice under open boundary conditions. The bond di-
mension for both MPS and FAMPS are D = 1000. The
result for the FAMPS is for the underlying MPS (without
disentanglers). We can see that both the entanglement
entropy (EE) and truncation error (TE) are reduced in
FAMPS, which demonstrates the effect of disentanglers
to reduce the entanglement in the ground state wave-
function and hence to increase the accuracy of MPS.

More Results

In Fig. 5, we show the extrapolation of FAMPS energy
with bond dimension for the transverse Ising model with
periodic boundary conditions and λ = 3.05 on a 8 ×
8 lattice. A quadratic fit gives the extrapolated value
of ground state energy per site E = −3.24165(1) which
agrees with the SSE QMC result −3.24163(1) within the
error bar.
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