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Text A: Hawking radiation and IHO

In this section, we show that the equation of motion of a scalar field near the event horizon of Schwarzschild black
hole (BH) is of the same form as the stationary Schrödinger equation of the inverted harmonic oscillator (IHO). Near
the event horizon, the Schwarzschild metric can be reduced to the Rindler metric which describes the spacetime of a
uniformly accelerating system. To this end, we define

ρ =

∫ r

rs

(
1− rs

r′

)−1/2

dr′ =
√
r(r − rs) + rs tanh−1

(√
1− rs

r

)
. (S1)

Near the event horizon, ρ can be approximated by

ρ ≈ 2
√
rs(r − rs), (S2)

and the Schwarzschild metric can be written as

ds2 ≈ ρ2

(
cdt

2rs

)2

− dρ2 −
(
ρ2

4rs
+ rs

)2

(dθ2 + sin2 θdϕ2). (S3)

Due to the rotational symmetry, we could only consider the radial part. By defining a dimensionless time τ = ct/(2rs),
we have the Rindler metric in the 1 + 1 spacetime,

ds2 = ρ2dτ2 − dρ2, (S4)

which can also be written into a conformally flat form by choosing a new spatial coordinate ξ = κ−1 ln(κρ) and
rescaling τ → τ/κ. Then we have the following metric

ds2 = e2κξ(dτ2 − dξ2). (S5)

Then equation of motion of scalar field near the event horizon can be written as(
∂2

∂τ2
− ∂2

∂ξ2

)
φ(τ, ξ) = 0. (S6)

The eigen modes are

φ±(τ, ξ) = e±iΩ(ξ∓τ), (S7)

which satisfy i∂τφ± = Ωφ± and can be understood as the right/left-moving modes. If we define

u = −e
κ(ξ−τ)

κ
; v =

eκ(ξ+τ)

κ
, (S8)

and the scaling operators

Ŝv = −iv∂v; Ŝu = iu∂u, (S9)
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Eq.(S6) becomes

ŜuŜvφ(u, v) = 0. (S10)

Noticing that ∂τ = iκ(Ŝu + Ŝv), the two independent solutions φ1(u, v) ≡ φ1(u) and φ2(u, v) ≡ φ2(v) thus satisfy

Ŝuφ1(u) = −Ω

κ
φ1(u); Ŝvφ2(v) = −Ω

κ
φ2(v), (S11)

and

φ1(u, v) = (−κu)iΩ/κ, φ2(u, v) = (κv)−iΩ/κ, (S12)

which can also be obtained from Eq.(S7) using Eq.(S8). Eq. (S12) as eigenfunctions of ∂τ and the scaling operators

Ŝu/v underlie the Hawking-Unruh radiation [1, 2].
On the other hand, The Hamiltonian of the inverted harmonic oscillator is written as

ĤIHO =
p̂2

2m
− 1

2
mω2x̂2. (S13)

We define a new set of variables

û± =
p̂±mωx̂√

2mω
, (S14)

and it can be check that [û+, û−] = i~. Then, the IHO Hamiltonian can be rewritten as

ĤIHO =
ω

2

(
û+û− + û−û+

)
. (S15)

Now we consider the solutions to the Schrödinger equation in two distinct representations:

• In the u+-space, we have

ĤIHO =
ω

2

(
2û+û− − i~

)
= −i~ω

(
u+∂u+ +

1

2

)
, (S16)

and the solution to the Schrödinger equation ĤIHOψ(u+) = Eψ(u+) reads ψ(u+) = (±u+)
iE
~ω−

1
2 .

• In the u−-space, we have

ĤIHO =
ω

2

(
2û−û+ + i~

)
= i~ω

(
u−∂u− +

1

2

)
, (S17)

and the solution to the Schrödinger equation ĤIHOψ(u−) = Eψ(u−) reads ψ(u+) = (±u−)−
iE
~ω−

1
2 .

Comparing Eq.(S11) with Eq.(S16), (S17), we find that near the event horizon, the dynamic of a scalar field, up to a
constant energy shift, can be reduced to that of IHO.

Text B: Imperfect event horizon

The reflection and transmission with a generic “quantum defect” parameter y can be obtained by studying multiple
scatterings between an imperfect event horizon and potential barrier, as shown in Fig. S1. The imperfect event
horizon partially reflects the incoming waves and thus corresponds to a reaction rate less than unity. According to
the quantum defect theory (QDT), the short range asymptotic behavior of the radial wave function is written as

u`(r → 0) ∝r
3/2

β6

[
e
i
(

1
2 ( β6r )

2− ν0π2 −
π
4

)
−

1− 1
iK0

`

1 + 1
iK0

`

e
−i
(

1
2 ( β6r )

2− ν0π2 −
π
4

)]
(S18)

where K0
` is the `-th wave K-matrix [3]. We define the “quantum-defect” parameter y in the following way

1− 1
iK0

`

1 + 1
iK0

`

=
1− y
1 + y

e−2iη` , (S19)



3

Im
perfect reaction …

…

…
…

|Rtot(y) |2

RR→L

TL→RR0TR→L

TL→RR0RL→RR0TR→L

…..

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0
1
2
3
4
5
6

r/�6

V
vd
W

FIG. S1. A schematic of multiple scatterings caused by an imperfect event horizon. RR(L)→L(R) and TR(L)→L(R) indicate
the reflection and transmission amplitude for the “right(left) to left(right)” scattering. Rtot(y) denotes the total reflection
amplitude with generic “quantum parameter” y. It can be obtained by summing over such an infinite series of scatterings.
Blue and red arrows denote the left and right moving waves. The solid and dashed curves depict the interaction between two
molecules with high partial-wave scatterings (or dipole-dipole interactions) and the IHO approximation, respectively.

where η` is the scattering phase shift. For the case that y = 1, K0
` = −i, and the second term in Eq.(S18) vanishes,

which corresponds to complete absorption. For the case that y = 0, K` = − 1
tan η`

, which corresponds to a complete

reflection, i.e., a perfect event horizon. For the generic case, the K-matrix is y-dependent via,

K0
` (y) = − 1

tan η`
+ y

1 + tan2 η`
(y + i tan η`) tan η`

. (S20)

The long-range asymptotic behavior of the radial wave function is written as

u`(r →∞) ∝
(
K0
` (y)Zgg − Zfg + i

(
K0
` (y)Zgf − Zff

))
ei(kr−

`π
2 )

+
(
K0
` (y)Zgg − Zfg − i

(
K0
` (y)Zgf − Zff

))
e−i(kr−

`π
2 ), (S21)

where Zgg, Zgf , Zfg, Zff are the element of the Z-matrix which is defined in Ref. [3]. Then we find the reflection
amplitude is written as

R(y) =
K0
` (y)Zgg − Zfg + i

(
K0
` (y)Zgf − Zff

)
K0
` (y)Zgg − Zfg − i (K0

` (y)Zgf − Zff )
. (S22)

We would like to point out that this result can be explained by taking into account an infinite series of bounces between
the potential barrier and the imperfect event horizon. To this end, we distinguish the “right-to-left scattering” and
“left-to-right scattering” through the potential barrier.

• Right to left scattering; In such case, the short range boundary condition is written as

uR→L(r → 0) ∝r
3/2

β6
e
i
[

1
2 ( β6r )

2− ν0π2 −
π
4

]
(S23)

which means K0
` = −i, and then we have

uR→L(r →∞) ∝
[
(Zgf − Zfg − iZff − iZgg) ei(kr−

`π
2 ) + (iZff − iZgg − Zgf − Zfg) e−i(kr−

`π
2 )
]
, (S24)

and the corresponding reflection and transmission amplitude are

RR→L =
Zgf − Zfg − i(Zff + Zgg)

i(Zff − Zgg)− (Zfg + Zgf )
; TR→L =

2
√

2

i(Zff − Zgg)− (Zgf + Zfg)
, (S25)

respectively. Using the fact that ZffZgg − ZfgZgf = −2, it is readily to verify |RR→L|2 + |TR→L|2 = 1.
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FIG. S2. Reflection rate |r`|2 and log
(
|t`|2/|r`|2

)
of reactive molecule under imperfect absorbing boundary condition for p-wave

(a,b) and d-wave (c,d) scattering.The solid curves depict the results of van der Waals potential and the dashed curves show the
results of IHO.

• Left to right scattering; In such case, the long range boundary condition is written as

uL→R(r →∞) ∝
((
K0
`Zgg − Zfg

)
+ i
(
K0
`Zgf − Zff

))
ei(kr−

`π
2 )

+
((
K0
`Zgg − Zfg

)
− i
(
K0
`Zgf − Zff

))
e−i(kr−

`π
2 ). (S26)

Since the second term is required to vanish, we have(
K0
`Zgg − Zfg

)
− i
(
K0
`Zgf − Zff

)
= 0, (S27)

i.e.,

K0
` =

Zfg − iZff
Zgg − iZgf

. (S28)

Then the short range boundary condition can be written as

uL→R(r → 0) ∝r
3/2

β6

[
Zgg + Zff + i(Zfg − Zgf )

Zgg − iZgf
e
i
(

1
2 ( β6r )

2− ν0π2 −
π
4

)

+
Zgg − Zff − i(Zfg + Zgf )

Zgg − iZgf
e
−i
(

1
2 ( β6r )

2− ν0π2 −
π
4

)]
, (S29)

and the corresponding reflection and transmission amplitude are written as

RL→R =
(Zfg − Zgf )− i(Zgg + Zff )

i(Zff − Zgg)− (Zfg + Zgf )
; TL→R =

√
2(ZfgZgf − ZffZgg)

i(Zff − Zgg)− (Zfg + Zgf )
, (S30)

respectively. It can also be checked that |RL→R|2 + |TL→R|2 = 1.
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We use R0 = − 1−y
1+y e

2iη` to characterize the reflection amplitude near the event horizon, where η` is the phase shift of

the elastic scattering. Then the total reflection amplitude can be written as

Rtot(y) =RR→L + TL→RR0TR→L + TL→RR0RL→RR0TR→L + TL→RR0RL→RR0RL→RR0TR→L + ...

=RR→L + TL→R
R0

1−R0RL→R
TR→L. (S31)

By substituting Eq.(S25) and Eq.(S30) into Eq.(S31), we immediately find Rtot(y) = R(y). As a result, the thermal-
like tunneling can be extracted from the decay rate of any y.

In the same spirit, we can obtain the scattering amplitude of IHO by implementing an imperfect absorbing boundary
condition at the imperfect event horizon. Considering the reflection symmetry of the IHO potential, we have

|rIHO|2(y) =

∣∣∣∣R−R0(R2 − T 2)

1−R0R

∣∣∣∣2 , (S32)

where R = S11 and T = S12 are the reflection and transmission amplitude of IHO, as shown in Eq.(5) of the main text.
In Fig. S2, we show the reflection rate of van der Waals potential under the partial absorbing boundary condition
provided by an imperfect event horizon. It is clear that the IHO provides a good approximation for a generic y.
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