Supplementary Materials: Critical current density, vortex

pinning, and phase diagram in the NaCl-type superconductors

InTe_{1-x}Se_x (x = 0, 0.1, 0.2)

Linchao Yu (于林超)^{1†}, Song Huang (黄嵩)^{1†}, Xiangzhuo Xing (邢相灼)^{1,2*}, Xiaolei Yi (易晓磊)³, Yan Meng (孟炎)⁴, Nan Zhou (周楠)⁵, Zhixiang Shi (施智祥)^{6*}, and

Xiaobing Liu (刘晓兵)^{1,2*}

¹School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China
²Advanced Research Institute of Multidisciplinary Sciences, Qufu Normal University, Qufu
273165, China

³College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, China

⁴Department of Physics, Jining University, Qufu 273155, China

⁵Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China

⁶School of Physics, Southeast University, Nanjing 211189, China

[†]These authors contributed equally to this work.

* Corresponding authors. Email: xzxing@qfnu.edu.cn, zxshi@seu.edu.cn, and

xiaobing.phy@qfnu.edu.cn

Fig. S1. (a) Powder XRD patterns of $InTe_{1-x}Se_x$ (x = 0.3, 0.4, 0.5) synthesized with the same conditions as $InTe_{1-x}Se_x$ (x = 0, 0.1, 0.2) at P=3.5 GPa and $T=700^{\circ}C$. (b) Powder XRD patterns of $InTe_{1-x}Se_x$ (x = 0.3) synthesized at various pressure and temperature conditions. It can be clearly seen that the position of diffraction peaks indexed by a NaCl-type structure are almost unchanged when x > 0.3. Meanwhile, amounts of impurity phases denoted by the red stars can be visible, despite adjusting the synthesis conditions. These indicate that the Se solubility limit is at around $x \sim 0.2$.

Fig. S2. $\rho/\rho_{5 \text{ K}}$ as a function of temperature under various applied fields for (a) InTe and (b) InTe_{0.8}Se_{0.2}.

Fig. S3. The deviation ΔM of the M(*H*) data from the Meissner line at various temperatures for InTe_{0.9}Se_{0.1}. The values of H_{c1}^* were determined by the field where the deviation $\Delta M(H)$ from the Meissner line is greater than 0.1 emu/cm³, as indicated by the blue dashed line. The same criterion was also adopted for InTe and InTe_{0.8}Se_{0.2}.