
Supplementary Materials: A Time-Dependent Random State Approach for
Large-scale Density Functional Calculations

Weiqing Zhou1 and Shengjun Yuan1, ∗

1Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education
and School of Physics and Technology, Wuhan University, Wuhan 430072, China

1. Higher-order Finite-difference Pseudopotential Method

Within the non-relativistic Kohn−Sham DFT, the ground state of a system of Ne electrons subject to an external
potential can be obtained by solving a set of one-particle equations, the Kohn−Sham equations (atomic units will be
used throughout):

[−∇2

2
+ VKS [ρ(r)]]φi(r) = εiφi(r) (1)

where Kohn-Sham potential VKS [ρ(r)] is usually divided as:

VKS [ρ(r)] = Vext[ρ(r)] + VH [ρ(r)] + Vxc[ρ(r)] (2)

where Vext is the external potential, VH is the Hartree potential, and Vxc is the exchange and correlation potential.
In this paper, we implement real-space finite-element methods, resulting in VKS [ρ(r)] = VKS(r).
In our letter, we impose a simple, uniform orthogonal three-dimensional (3D) grid where the points are described

in a finite domain by (xi, yj , zk) [1]. Kinetic-energy operator can be described by high-order finite-element difference
method [2],

∂2φ

∂x2
=

Nh∑
n=−Nh

Cnφ (xi + nh, yj , zk) +O
(
h2Nh+2

)
(3)

where h is the grid spacing and Nh is the order of finite-element difference. Expansion coefficients Cn for a uniform
grid are given in Table. S1 [2].

TABLE S1: Expansion coefficients Cn for higher-order finite-difference expressions of the second derivative.
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The Hartree energy density and potential are given by:

εH(r) =
1

2

∫
dr′

n(r′)

|r− r′|
(4)

VH(r) =

∫
dr′

n(r′)

|r− r′|
(5)

The Hartree potential VH could be obtained by solving Poisson’s equation.
For the exchange-correlation part, we use local-density approximation (LDA):

Exc[n] =

∫
drn(r)εxc(n(r)) (6)
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(a) (b)

FIG. S1: (a) pseudopotential of carbon atom generated by program ATOM [5]. (b) atomic wavefunction (Red
dashed curve) and pseudo-wavefunction (black solid curve) of carbon.

The most accurate formulae for the exchange-correlation functional were obtained by fitting the QMC results for
the Jellium model. Various parameterizations are available. We use one of the most popular choices proposed by
Vosko-Wilk [3]. From the Jellium model, the local part of the exchange is given by :

εx = −3

4
(
3

2π
)2/3

1

rs
,

Vx = (
3

2π
)2/3

1

rs
.

(7)

For Vext(r), we use full ionic potential −Z
r for the cases of single atoms. For other systems, we implement a

pseudopotential operator to reduce the computational demand. We use the projection scheme of the pseudopotential
operator suggested by Kleinman and Bylander [4]:

Vps(r) =

N∑
a=1

[
V loc
a,ps(r) +

∣∣∆V l
a,ps(r)φ

a
lm

〉 〈
∆V l

a,ps(r)φ
a
lm(r)

∣∣〈
φa
lm(r)

∣∣∆V l
a,ps(r)

∣∣φa
lm(r)

〉 ]
(8)

where the total pseudopotential can be divided into non-local and local part ∆V l
a,ps(r) ≡ V l

a,ps(r) − V loc
a,ps(r). V loc

a,ps

is the local part with specific angular momentum l component of atom a, which differs from zero only in the region
smaller than the cutoff radius r < rc. φ

a
lm is the atomic pseudo wave function with lm quantum angular momentum

numbers. It is worth noticing that the pseudopotential operator only needs to be calculated once at the very beginning
since it only depends on the atomic configuration. Taking the carbon atom as an example, we use the program ATOM
[5] to generate its pseudopotential. The type of pseudopotential is chosen as local density approximation (LDA) [6]
and plotted in Fig. S1. In Fig. S1 (b), we show the atomic pseudo-wave-function, and indeed it is the same as a
full-potential wave-function in the range of r > rs where rs is the cutoff radius. The construction of charge density
has been described in the main context.

2. Another Fermi-Dirac Filter

In this part, we add some detailed discussion of the methods used in rsDFT. First, we construct a random super-
position state in a uniform real-space grid as an initial state,

|φ0⟩ =
N∑
i=1

ci|ri⟩, (9)
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FIG. S2: The statistical error of calculated DOS as a function of the number of electrons for graphite nanocrystals
(a) or the number of random states for C540 (b). In (a), the standard deviation of the DOS spectrum∫∞
−∞ |D(ε)− < D(ε) > |dε is calculated based on the results from 500 individual random states, where < D(ε) > is

the mean value of {Dk(ε)} with k = 1, 2, ..., 500. In (b), the error is defined as ∆D ≡
∫∞
−∞ |D(ε)−DDiag(ε)|dε, where

DDiag(ε) is the result obtained from the diagonalization, and each point is averaged from 100 groups of S random
states.

where N is the number of grid, {ri} are the real space basis states, and {ci} are random complex numbers. Assuming
that

|En⟩ =
N∑
i

ai(En)|ri⟩, (10)

we have

|φ0⟩ =
N∑
i=1

ci

N∑
n=1

|En⟩⟨En|ri⟩

=

N∑
i=1

N∑
n=1

cia
∗
i (En)|En⟩

=

N∑
i=1

N∑
j=1

N∑
n=1

cia
∗
i (En)|rj⟩⟨rj|En⟩

=

N∑
i=1

N∑
j=1

N∑
n=1

cia
∗
i (En)aj(En)|rj⟩.

(11)

Now we consider another type of Dirac-Fermi filter different from the one introduced in the main text:

|φ⟩fd ≡ f(H)|φ0⟩

=

N∑
i=1

N∑
j=1

N∑
n=1

cia
∗
i (En)f(En)aj(En)|rj⟩

(12)
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In the inner product of ⟨φ0|φ⟩fd at grid rj can be calculated by using Eq. (11) and Eq. (12),

ρfd(rj) = 0⟨φ|rj⟩⟨rj|φ⟩fd

=

N∑
i,i′=1

N∑
n,m=1

c∗i ai(En)a
∗
j (En)ci′a

∗
i′(Em)f(Em)aj(Em)

=

N∑
i,i′=1

N∑
n=m

c∗i ai(En)ci′a
∗
i′(En)f(En)|aj(En)|2

+

N∑
i,i′=1

N∑
n ̸=m

c∗i ai(En)a
∗
j (En)ci′a

∗
i′(Em)f(Em)aj(Em)

(13)

According to the central limit theorem, for a large but finite number (S) of the random states |φp⟩ =
∑

i ci,p|ri⟩, we
have

1

S

S∑
p=1

ci,pci′,p = E(c2)δi,i′ +O(
1√
S
). (14)

Therefore, one proves that

lim
S→∞

1

S

S∑
p=1

⟨φp|rj⟩⟨rj|φp⟩fd

=

N∑
i=1

N∑
n=1

E(|c|2)f(En)|ai(En)|2|aj(En)|2

+

N∑
i=1

N∑
n ̸=m

E(|c|2)f(Em)ai(En)a
∗
i (Em)a∗j (En)aj(Em)

=

N∑
i=1

|ai(En)|2
N∑

n=1

E(|c|2)f(En)|aj(En)|2

=
1

N

N∑
n=1

f(En)|aj(En)|2

=
1

N
ρdiag(xj)

(15)

here we used the normalization property of KS orbitals

N∑
i=1

|ai(En)|2 = 1 (16)

and the orthogonal property

N∑
i=1

ai(En)a
∗
i (Em) = 0 (17)

for m ̸= n. Eq. (15) indicates that

ρfd(rj) ≡
N

S

S∑
p=1

⟨φp|rj⟩⟨rj|φp⟩fd (18)

is an approximation of the charge density at rj with an error vanishes as 1/
√
S, which can be verified in the zoom-in

figure of Fig. S3 .
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FIG. S3: The difference between the electron density obtained from KS-DFT ρdiag and rsDFT as a function of the
number of random samples S. In rsDFT, the results are obtained by using ρFD (Eq. (4) in the main context) or ρfd
(Eq. (13)). Using

√
f(H) instead of f(H) in the Fermi-Dirac filter will significantly reduce the statistical error.

However, the converge of ρfd(rj) using the Fermi-Dirac filter f(H) is slower than the one using double
√
f(H)

introduced in the main text. The reason is that, in Eq. (13), the sum in the second term (n ̸= m) involves all
unoccupied states associated with the index n, and their number is several orders larger than the number of occupied
states because N ≫ Ne. To overcome this difficulty, we introduce |φ⟩FD =

√
f(H)|φ⟩0, the one used in the main

context. The main advantage of using ρFD(rj) is that the sums in the second term (n ̸= m) of Eq. (4) of the main
context includes only occupied states, leading to a much faster convergence compared with Eq. (13) (see Fig. S3).

3. Chebyshev Polynomials Method

In the numerical calculation, the operators 1√
eβ(H−µ)+1

and e−iHt are approximated by using the Chebyshev poly-

nomial method. In general, a function f(x) whose values are in the range [-1,1] can be expressed as,

f(x) =
1

2
c0T0(x) +

∞∑
k=1

ckTk(x) (19)

where Tk(x) = cos(k arccosx) and the coefficients ck are

ck =
2

π

∫ 1

−1

dx√
1− x2

f(x)Tk(x) (20)

if we let x = cosθ, then Tk(x) = Tk(cos θ) = cos kθ, and

ck =
2

π

∫ π

0

f(cos θ) cos kθdθ

= Re

[
2

N

N−1∑
n=0

f

(
cos

2πn

N

)
e2πink/N

]
,

(21)

which can be calculated by the fast Fourier transform (FFT). We normalize H such that H̃ = H/∥H∥ has eigenvalues

in the range [-1,1] and put β̃ = β/∥β∥. Then

f(H̃) =

∞∑
k=0

ckTk(H̃) (22)
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FIG. S4: (a) DOS and carrier density of one He atom calculated using the time-dependent random state method of
one He atom. The vertical dashed lines indicate the energies obtained from the diagonalization. (b) The output
electron density after one iteration using diagonalization (black) and Fermi-Dirac filter on random states (red) from
the same input electron density (blue). For the He atom, due to the spherical symmetry, the electron density is only
a function of distance (r) from the center of the atom. (c) The converged ground-state electron density of the He
atom was obtained from KS-DFT and rsDFT. (d) The total energy as a function of bond length of molecular H2

from obtained from KS-DFT and rsDFT, respectively.

where the Chebyshev polynomial Tk(x) is the Chebyshev polynomial of the first kind. Tk(x) obeys the following
recurrence relation:

Tk+1(x) + Tk−1(x) = 2xTk(x)

with

T0(x) = 1, T1(x) = x.

In Table. S2, we present the number of nonzero Bessel function (NBessel) as a function of time step τ , and the
corresponding number of total matrix-vector operations Noperations for the same propagation time T = 1024π. We
can see a larger τ leads to fewer operations with the same total propagation time.

4. SINGLE ATOM

Let us consider a single Helium atom. In step (I), we construct a KS-Hamiltonian based on an initial electron
density. In step (II), we obtain DOS D(ε) by using the time-evolution method without the diagonalization of the
Hamiltonian matrix and subsequently determine the Fermi level µ (see Fig. S4(a)).
As a comparison, the energies of KS orbitals from the diagonalization are also shown in Fig. S4(a), which agree very

well with our results. In step (III), as there is only one occupied state, one can just use ρFD to obtain the electron
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FIG. S5: Comparisons of ground-state charge density calculated by KS-DFT based on diagonalization and rsDFT of
single atoms.

(a) (b)

FIG. S6: (a) The statistical error δρ as a function of total operations. Different colour indicates different time step τ
in time evolution. (b) The statistical error δρ as a function of 1/

√
Nt for different fullerenes, where τ = 64π.

TABLE S2: The number of nonzero Bessel function (NBessel) as a function of time step τ , and the corresponding
number of total matrix-vector operations Noperations for the same certain propagation time T = 1024π.

τ NBessel Nt Noperations

π 20 1024 20480

2π 27 512 13824

4π 38 256 9728

8π 56 128 7168

16π 89 64 5695

32π 149 32 4768

64π 261 16 4176

128π 478 8 3824

256π 899 4 3596

512π 1727 2 3454
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FIG. S7: The charge density of C60 calculated from average over a different number of random samples without time
evolution.

32 64 96 128

32 64 96 128

(a) time intervals dt = 𝜋

(b) time intervals dt = 32𝜋

FIG. S8: The charge density of C60 calculated from one random state averaging over from time evolution for 32, 64,
96, 128 steps with dt=π (a) and dt=32π (b).

density without time evolution. As a comparison, we also calculate the electron density ρdiag based on the occupied
KS orbital obtained from the diagonalization of KS-Hamiltonian, and plot together with ρFD in Fig. S4(b). We see
that with only S=10 random samples, ρFD converges to ρdiag with an error of ∆(ρFD − ρdiag) = 8.06× 10−5, where

∆(ρFD − ρdiag) ≡
∑N

j=1 |ρFD(rj)− ρdiag(rj)|/N . In step (IV), we use ρFD as the new input electron density and
perform the next iteration. The self-consistent iterations, including steps (I) to (IV), are continued until a threshold
is reached. In our approach, since the space resolution (determined by N) is much larger than the energy resolution
(determined by Nt), it is more accurate to use the electron density instead of the total energy to define the convergence
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FIG. S9: The ground-state charge density calculated by rsDFT and VASP, respectively.

criterion. The ground-state electron density obtained from rsDFT without any diagonalization agrees well with the
one from the common KS-DFT with diagonalization. Both are plotted in Fig. S4(c) for comparison. More examples
of other single atoms can be found in Fig. S5.

4. MOLECULES

For molecular systems, we consider a diatomic model H2. The iterative calculations are similar to those of a single
atom. Here we verify our approach by calculating the total energies for different H-H bond lengths and compare
the results from our rsDFT approach and the common KS-DFT in Fig. S4(d). The two methods yield similar total
energies for a given H-H bond length. The bond lengths in the ground state obtained from both ways are the same
(74 pm), which agrees with the well-known result [7].

5. CLUSTERS

We extend our calculations to large atomic clusters of fullerenes C60 and C540. In Fig. S7, we plot the ρFD

averaging from up to 128 random states. As a comparison, we also present ρRS using only one random state, but
different propagation time in Fig. S8(a) with τ = π and Fig. S8(b) with τ = 32π. The real-space distribution of electron
density in the ground state is visualized by VESTA [8] in Fig. S9. We use VASP (Vienna Ab initio Simulation Package)
[9] to represent the standard KS-DFT method. VASP is a very efficient and widely used commercial KS-DFT package.
The electron density distributions obtained from rsDFT and VASP are very similar.
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42 atoms 264 atoms 2202 atoms

FIG. S10: ∆(ρin − ρout) as a function of iterative steps for A-B stacked graphite calculated by rsDFT. The insets
indicate the converged ground state densities.

(a) (b)

FIG. S11: Time cost of per iteration (a) and memory cost (b) during self-consistent calculations for fullerenes with
different numbers of electrons. Black points refer to the traditional KS-DFT method with diagonalization, and red
points refer to the rsDFT method without diagonalization. In rsDFT, we used 36 random samples for the average in
the DOS and charge density calculations, the time step is τ = 64π and the number of time steps is Nt = 36.

6. CRYSTALS

More rsDFT calculations of graphite nanocrystals with different numbers of carbon atoms are plotted in Fig. S10.

7. CPU TIME AND MEMORY COST

To have a direct comparison of the CPU time and memory cost between the traditional KS-DFT (with diagonal-
ization) and rsDFT (without diagonalization), we performed calculations for the fullerenes with different numbers of
atoms (electrons) on a server with 40 CPU cores (2*Intel(R) Xeon(R) CPU Gold 6248). As shown in Fig. S11(a), if
the system has less than ∼ 1000 electrons, the traditional KS-DFT is much faster, but when the system size reaches
∼ 1000 electrons, the rsDFT method becomes more efficient. The results in Fig. S11(a) also indicates that the time
cost of rsDFT scales linearly with the system size, whereas the traditional KS-DFT scales approximately as O(N3

e ).
Although the accuracy of rsDFT and KS-DFT are not exactly the same, we estimate that rsDFT becomes more
efficient when the system contains a few thousand or more electrons.
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