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A. Löwdin partitioning theory to obtain k · p Hamiltonian

The Löwdin partitioning theory, also called as quasi-degenerate perturbation, is really a useful and important
method to make an approximation to simplify the Hamiltonian by reducing the dimension. The main idea of it is to
introduce an anti-Hermitian matrix S, which can transform the origin Hamiltonian matrix H (such as k ·p Hamiltonian
Hkp defined by Eq. (3) in the main text to the optimal Hamiltonian matrix H̃, which is expressed by

H̃ = e−SHeS (A.1)

It is obvious that H̃ has the same eigenvalues as H, thus making the corresponding bands all the same. Moreover, H̃
is expected to be block diagonal, as shown in Fig. A1, where A corresponds to the subspace of the bands of interest
and B corresponds to the subspace of other bands. After this transformation, we can directly use the matrix block
corresponding to A to replace the original Hamiltonian matrix. However, it is difficult to get the analytic or accurate
matrix S, so we must use the perturbation expansion method to find the series solution.

First, suppose that the Hamiltonian H = H0 +H ′, where H0 is a diagonal matrix, which is the main part of the
Hamiltonian while H ′ can be treated as a perturbation. For instance, the k · p Hamiltonian Hkp can be the sum of
the diagonal matrix whose diagonal elements are the eigenvalues ϵn(k0)

(Hkp
0 )mn =

(
ϵn(k0) +

ℏ2k2

2m

)
δmn (A.2)

and the perturbation terms

H ′kp
mn =

ℏ
m
πmn · k , (m ̸= n) (A.3)

with small k. Furthermore, H ′ can be separated as the sum of H1 and H2 which only have nonzero elements in and
between the subspaces A and B, respectively, as shown in Fig. A2. Therefore, we can rewrite the origin Hamiltonian
as

H = H0 +H1 +H2 (A.4)

We suppose that the matrix S is anti-Hermitian and in the same shape as H2 (only has nonzero matrix elements
between subspaces A and B), making eS a unitary matrix. It is simple to find that [H1, S] is in the same shape as H2

and [H2, S] is in the same shape as H1, no matter what H1 and H2 are. According to the Baker–Campbell–Hausdorff
formula, Eq. (A.1) can be rewritten as

H̃ =

+∞∑
i=0

1

i!
[H,S](i)

=

+∞∑
i=0

1

(2i)!
[H0 +H1, S]

(2i) +

+∞∑
i=0

1

(2i+ 1)!
[H2, S]

(2i+1) +

+∞∑
i=0

1

(2i+ 1)!
[H0 +H1, S]

(2i+1) +

+∞∑
i=0

1

(2i)!
[H2, S]

(2i)

(A.5)
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FIG. A1: Transform the original Hamiltonian H to the optimal Hamiltonian H̃. The gray parts represent nontrivial matrix
elements while the white parts represent trivial matrix elements (zero elements).

FIG. A2: The schematic of H, H0, H1 and H2. The gray parts represent nontrivial matrix elements while the white parts
represent trivial matrix elements.

The sum of first two terms of Eq. (A.5) is block diagonal in the same shape as H1, which is denoted by

H̃D =

+∞∑
i=0

1

(2i)!
[H0 +H1, S]

(2i) +

+∞∑
i=0

1

(2i+ 1)!
[H2, S]

(2i+1) (A.6)

and the sum of last two terms of Eq. (A.5) is non-block diagonal in the same shape as H2, which is denoted by

H̃N =

+∞∑
i=0

1

(2i+ 1)!
[H0 +H1, S]

(2i+1) +

+∞∑
i=0

1

(2i)!
[H2, S]

(2i) (A.7)

To make H̃ block diagonal, we have H̃N = 0. Use the ansatz that S can be expanded as

S = S(1) + S(2) + S(3) + · · · (A.8)

Extract the small quantities of each order in HN and let them be 0:
1st order

[H0, S
(1)] +H2 = 0 (A.9)

2nd order

[H0, S
(2)] + [H1, S

(1)] = 0 (A.10)

3rd order

[H0, S
(3)] +

1

6
[H0, S

(1)](3) + [H1, S
(2)] +

1

2
[H2, S

(1)](2) = 0 (A.11)

· · ·
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By solving Eqs. (A.9)-(A.11), the matrix elements of S(i) can be written as

S
(1)
αl = − H ′

αl

Eα − El

S
(2)
αl =

1

Eα − El

[∑
α′∈A

H ′
αα′H ′

α′l

Eα′ − El
−
∑
l′∈B

H ′
αl′H

′
l′l

Eα − El′

]

S
(3)
αl =

1

Eα − El

×

− ∑
α′,α′′∈A

H ′
αα′′H ′

α′′α′H ′
α′l

(Eα′′ − El) (Eα′ − El)
−
∑

l′,l′′∈B

H ′
αl′H

′
l′l′′H

′
l′′l

(Eα − El′′) (Eα − El′)

+
∑

l′∈B,α′∈A

H ′
αα′H ′

α′l′H
′
l′l

(Eα′ − El) (Eα′ − El′)
+

∑
l′∈B,α′∈A

H ′
αα′H ′

α′l′H
′
l′l

(Em − El′) (Eα′ − El′)

+
1

3

∑
l′∈B,α′∈A

H ′
αl′H

′
l′α′H ′

α′l

(Eα′ − El′) (Eα′ − El)
+

1

3

∑
l′∈B,α′∈A

H ′
αl′H

′
l′α′H ′

α′l

(Eα − El′) (Eα′ − El′)
+
2

3

∑
l′∈B,α′∈A

H ′
αl′H

′
l′α′H ′

α′l

(Eα − El′) (Eα′ − El)


· · · = · · ·

(A.12)
where α ∈ A and l ∈ B. This matrix S makes H̃N = 0 so that H̃ = H̃D. After obtaining the matrix S, we can
directly obtain the optimal Hamiltonian by Eq. (A.6), which is expressed by

H̃ = H̃(0) + H̃(1) + H̃(2) + H̃(3) + · · · (A.13)

where 

H
(0)
αα′ =H0

αα′

H
(1)
αα′ =H ′

αα′

H
(2)
αα′ =

1

2

∑
l∈B

H ′
αlH

′
lα′

[
1

Eα − El
+

1

Eα′ − El

]
H

(3)
αα′ =− 1

2

∑
l∈B,α′′∈A

[
H ′

αlH
′
lα′′H ′

α′′α′

(Eα′ − El) (Eα′′ − El)
+

H ′
αα′′H ′

α′′lH
′
lα′

(Eα − El) (Eα′′ − El)

]

+
1

2

∑
l,l′∈B

H ′
αlH

′
ll′H

′
l′α′

[
1

(Eα − El) (Eα − El′)
+

1

(Eα′ − El) (Eα′ − El′)

]
· · · = · · ·

(A.14)

Up to now, we have already obtained the optimal Hamiltonian. In the case of k · p Hamiltonian, by substituting
Eq. (A.2) and Eq. (A.3) into Eq. (A.14), we can obtain

H
kp(0)
αβ =

(
ϵα(k0) +

ℏ2k2

2m

)
δαβ

H
kp(1)
αβ =

ℏ
m
παβ · k

H
kp(2)
αβ =

ℏ2

2m2

∑
l∈B

∑
ij

[
1

ϵα(k0)− ϵl(k0)
+

1

ϵβ(k0)− ϵl(k0)

]
πi
αlπ

j
lβk

ikj

H
kp(3)
αβ = − ℏ3

2m3

∑
ijq

 ∑
l∈B,γ∈A

[
πi
αlπ

j
lγπ

q
γβ

(ϵβ(k0)− ϵl(k0))(ϵγ(k0)− ϵl(k0))
+

πi
αγπ

j
γlπ

q
lβ

(ϵα(k0)− ϵl(k0))(ϵγ(k0)− ϵl(k0))

]

−
∑
l,l′∈B

[
1

(ϵα(k0)− ϵl(k0))(ϵα(k0)− ϵl′(k0))
+

1

(ϵβ(k0)− ϵl(k0))(ϵβ(k0)− ϵl′(k0))

]
πi
αlπ

j
ll′π

q
l′β

 kikjkq

(A.15)
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Therefore, the k · p Hamiltonian of order 2 is the sum of Hkp(0), Hkp(1) and Hkp(2), which is equal to Eq. (4) in the
main text. Moreover, the k · p Hamiltonian of order 3 can be expressed by

H
kp(≤3)
αβ

=

(
ϵα(k0) +

ℏ2k2

2m

)
δαβ +

ℏ
m
παβ · k +

ℏ2

2m2

∑
l∈B

∑
ij

[
1

ϵα(k0)− ϵl(k0)
+

1

ϵβ(k0)− ϵl(k0)

]
πi
αlπ

j
lβk

ikj

− ℏ3

2m3

∑
ijq

 ∑
l∈B,γ∈A

[
πi
αlπ

j
lγπ

q
γβ

(ϵβ(k0)− ϵl(k0))(ϵγ(k0)− ϵl(k0))
+

πi
αγπ

j
γlπ

q
lβ

(ϵα(k0)− ϵl(k0))(ϵγ(k0)− ϵl(k0))

]

−
∑
l,l′∈B

[
1

(ϵα(k0)− ϵl(k0))(ϵα(k0)− ϵl′(k0))
+

1

(ϵβ(k0)− ϵl(k0))(ϵβ(k0)− ϵl′(k0))

]
πi
αlπ

j
ll′π

q
l′β

 kikjkq

(A.16)

B. Derivation of Zeeman’s coupling

It is easy to compute the commutator [∂i, Aj ] as

[∂i, Aj ]ϕ = ∂i(Ajϕ)−Aj∂iϕ = (∂iAj)ϕ+Aj∂iϕ−Aj∂iϕ = (∂iAj)ϕ (B.1)

or in a simple form

[∂i, Aj ] = ∂iAj . (B.2)

In addition, the components of the magnetic field can be expressed by

Bk = (∇×A) · ek =
∑
lmn

ϵlmn∂
mAnel · ek =

∑
lmn

ϵlmn∂
mAnδlk =

∑
mn

ϵkmn∂
mAn (B.3)

where ϵlmn is the Levi-Civita symbol and A is the magnetic vector potential. Therefore, we can establish the relation
that∑

k

ϵijkBk =
∑
mnk

ϵijkϵkmn∂
mAn =

∑
mn

(∑
k

ϵijkϵkmn

)
∂mAn =

∑
mn

(δimδjn − δinδjm)∂mAn = ∂iAj − ∂jAi (B.4)

Therefore, we can obtain the relation in Sec. IIB that[
−iℏ∂i + eAi,−iℏ∂j + eAj

]
= −ieℏ(

[
∂i, Aj

]
−
[
∂j , Ai

]
) = −iℏe(∂iAj − ∂jAi) = −iℏe

∑
k

ϵijkBk (B.5)

Furthermore, after replacing ki by −iℏ∂i + eAi (Peierls substitution) in Eq. (4) in the main text, the last summation
can be transformed as∑

ij

πi
αlπ

j
lβ(−iℏ∂i + eAi)(−iℏ∂j + eAj)

=
∑
ij

πi
αlπ

j
lβ

(
1

2

[
−iℏ∂i + eAi,−iℏ∂j + eAj

]
+

1

2

{
−iℏ∂i + eAi,−iℏ∂j + eAj

})

=− iℏe
2

∑
ijk

πi
αlπ

j
lβϵ

ijkBk +
ℏ2

2

∑
ij

πi
αlπ

j
lβ

(
−i∂i +

e

ℏ
Ai
)(

−i∂j +
e

ℏ
Aj
)
+

ℏ2

2

∑
ij

πi
αlπ

j
lβ

(
−i∂j +

e

ℏ
Aj
)(

−i∂i +
e

ℏ
Ai
)

=− iℏe
2

∑
ijk

πi
αlπ

j
lβϵ

ijkBk +
ℏ2

2

∑
ij

πi
αlπ

j
lβ

(
−i∂i +

e

ℏ
Ai
)(

−i∂j +
e

ℏ
Aj
)
+

ℏ2

2

∑
ij

πj
αlπ

i
lβ

(
−i∂i +

e

ℏ
Ai
)(

−i∂j +
e

ℏ
Aj
)

=− iℏe
2

∑
ijk

πi
αlπ

j
lβϵ

ijkBk + ℏ2
∑
ij

πi
αlπ

j
lβ + πj

αlπ
i
lβ

2

(
−i∂i +

e

ℏ
Ai
)(

−i∂j +
e

ℏ
Aj
)

(B.6)
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The Hamiltonian of Zeeman’s coupling is the gauge independent part in Eq. (4) (after Peierls substitution), which is
expressed as

HZ
αβ =

µB

ℏ
(Lαβ + 2sαβ) ·B (B.7)

where

Lk
αβ = − iℏ

2m

∑
l∈B

∑
ij

ϵijkπi
αlπ

j
lβ

(
1

ϵα(k0)− ϵl(k0)
+

1

ϵβ(k0)− ϵl(k0)

)
(B.8)

and 2
ℏµBs ·B is the Zeemans’s coupling of the bare electron. In addition, the gauge dependent part in Eq. (4) (after

Peierls substitution) is expressed by

Hkp
αβ = ϵα(k0)δαβ +

ℏ
m
παβ ·

(
−i∇+

e

ℏ
A
)
+
∑
ij

M ij
αβ

(
−i∂i +

e

ℏ
Ai
)(

−i∂j +
e

ℏ
Aj
)

(B.9)

where

M ij
αβ =

ℏ2

2m
δαβδij +

ℏ2

4m2

∑
l∈B

(
πi
αlπ

j
lβ + πj

αlπ
i
lβ

)( 1

ϵα(k0)− ϵl(k0)
+

1

ϵβ(k0)− ϵl(k0)

)
. (B.10)

The Eqs. (B.7)-(B.10) are the same as Eqs. (5)-(8).

C. Construction of the coefficient matrix Q for finding the unitary transformation U

Only the generators of the group L should be taken into account when finding the unitary transformation matrix
U . T is an anti-unitary generator, while S are the unitary generators. The Eq. (17) in the main text can be rewritten
as

Dnum(S)U − UDstd(S) = O (C.1)

Dnum(T )U∗ − UDstd(T ) = O (C.2)

where O is a zero matrix. The matrices U , Dstd(R) and Dnum(R) are complex, so we can consider the real parts and
the imaginary parts separately, thus transforming Eqs. (C.1)-(C.2) into{

Dnum
r (S)Ur − UrD

std
r (S)−Dnum

i (S)Ui + UiD
std
i (S) = O

Dnum
i (S)Ur − UrD

std
i (S) +Dnum

r (S)Ui − UiD
std
r (S) = O

(C.3)

and {
Dnum

r (T )Ur − UrD
std
r (T ) +Dnum

i (T )Ui + UiD
std
i (T ) = O

−Dnum
i (T )Ur + UrD

std
i (T ) +Dnum

r (T )Ui + UiD
std
r (S) = O

(C.4)

where the subscripts r represent the real parts of U , Dstd(R) or Dnum(R) and the subscripts i represent the imaginary
parts. Consider the real part and the imaginary part of each elements of U as independent variables, which are
denoted as Ur11, Ur12, · · ·Urnn and Ui11, Ui12, · · ·Uinn, respectively. From Eqs. (C.3)-(C.4), it is clear to find that the
matrix equations are all linear equations and all the parameters and variables are real. Introduced a column vector
u = (Ur11, Ur12, · · · , Urnn, Ui11, Ui12, · · · , Uinn)

T , which is comprised of all the independent variables to be solved,
Eqs. (C.3)-(C.4) can be rewritten as

A(S)u = 0 (C.5)

where

A(S) =

(
Dnum

r (S)⊗ I − I ⊗DstdT
r (S) −Dnum

i (S)⊗ I + I ⊗DstdT
i (S)

Dnum
i (S)⊗ I − I ⊗DstdT

i (S) Dnum
r (S)⊗ I − I ⊗DstdT

r (S)

)
(C.6)
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and

B(T )u = 0 (C.7)

where

B(T ) =

(
Dnum

r (T )⊗ I − I ⊗DstdT
r (T ) Dnum

i (T )⊗ I + I ⊗DstdT
i (T )

−Dnum
i (T )⊗ I + I ⊗DstdT

i (T ) Dnum
r (T )⊗ I + I ⊗DstdT

r (T )

)
. (C.8)

The Eq. (C.5) holds for all unitary generators S1, S2, · · · , Sn. Combined Eq. (C.5) with Eq. (C.6), we can construct
the large parameter matrix Q so that the vector u corresponds to the transformation matrix U satisfies Qu = 0,
where

Q = (AT (S1), A
T (S2), · · · , AT (Sn), B

T (T ))T . (C.9)

Therefore, all vectors in the null space of the matrix Q is the solution to Eq. (16) in the main text.

D. Functions of vasp2mat

Except for the calculation of matrices of generalized momentum π̂ = p̂ + 1
2mc2 (ŝ×∇V (r)), spin ŝ, time reversal

operator T̂ and crystalline symmetry operators R̂, the patch vasp2mat can also do other calculations by setting the
parameter vmat in INCAR.mat. All functions of vasp2mat are shown in TABLE D1, where σ̂ is Pauli operator. The
matrix of time reversal operator T̂ can be calculated with “vmat=12; time_rev=.true.”.

TABLE D1: The function of different vmat of vasp2mat.
vmat Functions

1 Calculate overlap matrix ⟨m(K)|n(K)⟩
2 Calculate soft local potential matrix ⟨m̃(K)|V̂eff|ñ(K)⟩
3 Calculate kinetic energy matrix of pseudo wavefunctions ⟨m̃(K)|T̂k|ñ(K)⟩
4 Calculate nonlocal potential matrix ⟨m̃(K)|V̂NL|ñ(K)⟩
5 Calculate Hamiltonian matrix ⟨m(K)|Ĥ|n(K)⟩
7 Calculate momentum matrices ⟨m(K)|p̂|n(K)⟩
8 Calculate SOC Hamiltonian matrix ⟨m(K)|ĤSOC |n(K)⟩
10 Calculate spin matrices ⟨m(K)|σ̂|n(K)⟩
11 Calculate generalized momentum matrices ⟨m(K)|π̂|n(K)⟩
12 Calculate matrix representation of a symmetry operator ⟨m(K)|R̂|n(K)⟩
13 Calculate Berry curvature, anomalous Hall conductance and spin Hall conductance
14 Calculate Wilson loops to obtain Berry phases



7

E. The standard matrix representations

TABLE E1: In Na3Bi, the matrix representations of DT7 and DT8 irreps at kD (0 0 w) are given on BCS server,
https://www.cryst.ehu.es/cgi-bin/cryst/programs/corepresentations_out.pl?super=194.264&vecfinal=DT.

R

Dstd(R) irrep
DT7 DT8

{C3z|0, 0, 0}
(
−1 0
0 −1

) (
e−

πi
3 0

0 e
πi
3

)
{C2z|0, 0, 1

2
}

(
−ieiπw 0

0 ieiπw

) (
−ieiπw 0

0 ieiπw

)
{Mx|0, 0, 0}

(
0 1
−1 0

) (
0 e−

2πi
3

e−
πi
3 0

)
{TP |0, 0, 0}

(
0 1
−1 0

)
K

(
0 1
−1 0

)
K

TABLE E2: In Te, the matrix representations of H4, 5 and H6 irreps at H are given on BCS server, https://www.cryst.ehu.es/cgi-
bin/cryst/programs/corepresentations_out.pl?super=152.34&vecfinal=H.

R

Dstd(R) irrep
H4 H5 H6

{C3z|0, 0, 1
3
} 1 1

(
e−

2πi
3 0

0 e
2πi
3

)

{C2x|0, 0, 2
3
} i −i

(
0 e

2πi
3

e
πi
3 0

)

TABLE E3: In WZ InAs, the matrix representations of GM7 and GM8 irreps at Γ are given on BCS server,
https://www.cryst.ehu.es/cgi-bin/cryst/programs/corepresentations_out.pl?super=186.204&vecfinal=GM.

R

Dstd(R) irrep
GM7 GM8

{C3z|0, 0, 0}
(
−1 0
0 −1

) (
e−

πi
3 0

0 e
πi
3

)
{C2z|0, 0, 1

2
}

(
−i 0
0 i

) (
−i 0
0 i

)
{Mx|0, 0, 0}

(
0 1
−1 0

) (
0 e−

2πi
3

e−
πi
3 0

)
{T |0, 0, 0}

(
0 1
−1 0

)
K

(
0 1
−1 0

)
K

TABLE E4: In 1H-TMD monolayers, the matrix representations of K8 and K11 irreps at K are given on BCS server,
https://www.cryst.ehu.es/cgi-bin/cryst/programs/corepresentations_out.pl?super=187.210&vecfinal=K.

R

Dstd(R) irrep
K8 K11

{C3z|0, 0, 0} −1 e
πi
3

{Mz|0, 0, 0} i −i

{MxT |0, 0, 0} −1 · K e−
πi
3 · K

https://www.cryst.ehu.es/cgi-bin/cryst/programs/corepresentations_out.pl?super=194.264&vecfinal=DT
https://www.cryst.ehu.es/cgi-bin/cryst/programs/corepresentations_out.pl?super=152.34&vecfinal=H
https://www.cryst.ehu.es/cgi-bin/cryst/programs/corepresentations_out.pl?super=152.34&vecfinal=H
https://www.cryst.ehu.es/cgi-bin/cryst/programs/corepresentations_out.pl?super=186.204&vecfinal=GM
https://www.cryst.ehu.es/cgi-bin/cryst/programs/corepresentations_out.pl?super=187.210&vecfinal=K
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F. Sixband model at Γ in wurtzite InAs

At Γ in the Brillouin zone of InAs, we consider six valence bands for the hole doping sample. The band represen-
tations are GM8, GM8 and GM7 in the ascending order. The representation matrices of generators are presented in
TABLE E3. The second order k · p Hamiltonian of six valence bands of InAs at Γ is expressed by



Hkp
11 =Hkp

22 = a1 +
4
√
3

3
a4 + d1k+k− + d2k

2
z

d1 = c1 +
4
√
3

3
c5, d2 = c10 +

4
√
3

3
c13k

2
z

Hkp
12 =ξ+(2b1 + 4b2 − 3b3 − 2b4)k−

Hkp
13 =Hkp

24 = 2a3 − 2ib6kz + d5k+k− + c12k
2
z

d5 = 2c3 +
2
√
3

3
c4

Hkp
14 =2ξ+b2k− +

2
√
3

3
iξ+c8k−kz

Hkp
15 =Hkp∗

26 =

(
−2c3 −

2
√
3

3
c4 + 2c6

)
ξ−k

2
−

Hkp
16 =2ξ−(b2 − b4)k+ −

√
3

3
iξ−(2c7 + 2c8 + 3c9)k+kz

Hkp
23 =2ξ−b2k+ +

2
√
3

3
iξ−c8k+kz

Hkp
25 =2ξ+(b2 − b4)k− −

√
3

3
iξ+(2c7 + 2c8 + 3c9)k−kz

Hkp
33 =Hkp

44 = a1 + 2a2 −
2
√
3

3
a4 + d+3 k+k− + d+4 k

2
z

Hkp
34 =− 2ξ+(b2 − b4 − b5)k−

Hkp
35 =Hkp∗

46 = −2
√
3

3
ξ−c4k

2
−

Hkp
36 =− (4b2 − 3b3 − 2b4)ξ−k+ − 2

√
3

3
iξ−c7k+kz

Hkp
45 =− (4b2 − 3b3 − 2b4)ξ+k− − 2

√
3

3
iξ+c7k−kz

Hkp
55 =Hkp

66 = a1 − 2a2 −
2
√
3

3
a4 + d−3 k+k− + d−4 k

2
z

d±3 = c1 ± 2c2 −
2
√
3

3
c5,

d±4 = c10 ± 2c11 −
2
√
3

3
c13

Hkp
56 =0

with ξ± = 1±
√
3i

(F.1)
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The Zeeman’s coupling of six valence bands of InAs at Γ can be expressed by

HZ =
µB

2


h1Bz h3B+ 2g7Bz h4B− 0 h5B+

−h1Bz h∗
4B+ −2g7Bz h∗

5B− 0
3g9Bz h6B− 0 h7B+

−3g9Bz h∗
7B− 0

† h2Bz 0
−h2Bz


h1 = 2h6 +

2
√
3

3
g8 + 3g9

h2 =
4
√
3

3
g8 + 3g9

h3 = −
√
3

3
iξ+(2g1 + 4g2 − 3g3 − 2g4)

h4 = −2
√
3

3
iξ+g2

h5 =
2
√
3

3
iξ−(g2 − g4)

h6 =
2
√
3

3
iξ+(g2 − g4 − g5)

h7 = −
√
3

3
iξ−(4g2 − 3g3 − 2g4)

with ξ± = 1±
√
3i

(F.2)

The values of the parameters {ai, bi, ci, gi} are presented in TABLE F1.

TABLE F1: The computed values of parameters {ai, bi, ci, gi} for six valence states in InAs are obtained from the VASP
calculations directly.

a (eV) b (eV·Å) c (eV·Å2) g
a1 = 3.91 b1 = 0.13 c1 = −45.78 g1 = −3.28
a2 = −0.09 b2 = 0.08 c2 = 12.94 g2 = −2.44
a3 = 0.02 b3 = 0.11 c3 = −1.54 g3 = −3.16
a4 = 0.03 b4 = −0.09 c4 = −20.14 g4 = 5.50

b5 = 0.06 c5 = 7.65 g5 = −2.76
b6 = 0.21 c6 = −2.23 g6 = −11.20

c7 = 21.62 g7 = −6.90
c8 = 32.86 g8 = 19.82
c9 = −60.12 g9 = −3.88
c10 = −45.68
c11 = −7.45
c12 = 28.03
c13 = −23.43


	A. Löwdin partitioning theory to obtain  Hamiltonian
	B. Derivation of Zeeman's coupling
	C. Construction of the coefficient matrix  for finding the unitary transformation 
	D. Functions of vasp2mat
	E. The standard matrix representations
	F. Sixband model at  in wurtzite InAs

