Supplemental Material:

Physical Origin of Color Changes in Lutetium Hydride under Pressure

Run Lv^{1,2}, Wenqian Tu^{1,2}, Dingfu Shao¹, Yuping Sun^{3,1,4}, Wenjian Lu^{1,*}

¹Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China ²University of Science and Technology of China, Hefei 230026, China

³High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, China

⁴Collaborative Innovation Center of Microstructures, Nanjing University, Nanjing 210093, China

*Corresponding author: wjlu@issp.ac.cn

Table S1 lists the plasma frequencies and reflectivity of blue and red light of LuH_2 and LuH_3 under different pressures. Tables S2-S4 list the detailed structure information corresponding to Figs. S2-S4. Crystal structures corresponding to Figs. S5-S8 were previously suggested by Ref. [1]. Detailed structural information can be found in the supplementary materials of Ref. [1].

Figure S1 shows the real part of the dielectric functions of LuH_2 under different pressures. Figures S2-S8 show crystal structures and dielectric functions of N-doped lutetium hydrides calculated in this work. The contributions of interband and intraband transitions to dielectric functions at 0 GPa (at 25 GPa for Fig. S5) are plotted separately, and the evolution of the total dielectric function under different pressures is also shown. The reflectivity and color of those structures not displayed in the main text are shown here. Figures S9-S14 show the dielectric functions and reflectivity of LuH_2 and LuH_3 with different hydrogen vacancies ratios.

Figure S15 shows the calculated phonon dispersion of LuH₂ and LuH₃. Figs. S15 (a) and (b) show the harmonic phonon dispersion. It was calculated using the density-functional perturbation theory (DFPT) method, with phonon frequency determined via the PHONOPY code ^[2]. Figs. S15(c) and (d) show the anharmonic phonon dispersion. The anharmonic phonon frequency is calculated using the mode decomposition technique developed in DynaPhoPy ^[3]. This code uses the molecular dynamics trajectory calculated by VASP and projects it onto a set of harmonic phonon modes obtained by Phonopy. The power spectrum is then calculated using the maximum entropy method (MEM), and the peaks are fitted to Lorentzian functions to extract the anharmonic phonon properties.

Structure	LuH ₂				LuH ₃		
Pressure	ω_p (eV)	R _{blue}	R _{red}	$\omega_p~(\mathrm{eV})$	R _{blue}	R _{red}	
0 GPa	5.82	0.45	0.28	1.62	0.42	0.41	
10 GPa	6.00	0.34	0.25	2.18	0.42	0.41	
20 GPa	6.11	0.29	0.48	2.36	0.44	0.41	
30 GPa	6.17	0.27	0.57	2.89	0.44	0.42	
40 GPa	6.25	0.25	0.60	2.74	0.43	0.44	
50 GPa	6.33	0.23	0.60	2.22	0.44	0.43	

Table S1. The plasma frequencies and reflectivity of typical blue (2.8 eV) R_{blue} and red (1.8 eV) R_{red} under different pressures.

Fig. S1. The real part of the dielectric function contributed by interband (solid line) and intraband (dashed line) transitions.

Table S2 . Structure information of Lu ₈ H ₁₅ N (LuH _{1.875} N _{0.125}) ($a = b = c = 10.0660$ Å, $\alpha = \beta = \gamma = 90.00$ °)					
	#	atom		position	
	1	Lu	0.3750	0.1250	0.1250
	2	Lu	0.1250	-0.1250	0.1250
	3	Н	0.2500	0.0000	0.2500
	4	Н	0.0000	-0.2500	0.5000
	5	Н	0.0000	-0.5000	0.5000
	6	Н	0.0000	0.0000	0.5000
	7	Н	-0.2500	-0.7500	0.7500
	8	Ν	-0.2500	-0.2500	0.7500

Fig. S2. (a) Crystal structure, (b)-(d) dielectric functions of Lu₈H₁₅N (LuH_{1.875}N_{0.125}, nitrogen atom at the tetrahedral site). Solid lines and dashed lines in (d) represent the real part ε_1 and imaginary part ε_2 of the dielectric function, respectively.

Table S3. Structure information of Lu₈H₁₆N (LuH₂N_{0.125}) (a = b = c = 10.0660 Å, $\alpha = \beta = \gamma = 90.00$ °).

#	atom		position	
1	Lu	-0.2500	0.2500	-0.2500
2	Lu	-0.7500	0.0000	0.0000
3	Н	-0.3750	0.1250	-0.1250
4	Н	-0.8750	-0.1250	0.1250
5	Ν	-0.5000	0.0000	0.0000

Fig. S3. (a) Crystal structure, (b)-(d) dielectric functions of Lu₈H₁₆N (LuH₂N_{0.125}, nitrogen atom at the octahedral site).

Table S4. Structure information of Lu₁₈H₃₅N (LuH_{1.944}N_{0.056}) (a = 15.5127 Å, b = 10.6766 Å, c = 7.1177 Å, $\alpha = \gamma = 90.00$ °, $\beta = 76.7376$ °).

#	atom		position	
1	Lu	-0.1667	0.1667	0.3333
2	Lu	-0.3333	0.3333	0.6667
3	Lu	-0.5000	0.1667	1.0000
4	Lu	-0.1667	0.1667	0.8333
5	Lu	-0.3333	0.3333	1.1667
6	Lu	-0.5000	0.1667	1.5000
7	Lu	0.0000	0.0000	0.0000
8	Lu	-0.3333	0.0000	0.6667
9	Lu	-0.6667	0.0000	1.3333
10	Lu	0.0000	0.0000	0.5000
11	Lu	-0.3333	0.0000	1.1667
12	Lu	-0.6667	0.0000	1.8333
13	Н	-0.2500	0.1667	0.6250
14	Н	-0.4167	0.1667	1.2083
15	Н	-0.4167	0.3333	0.9583
16	Н	-0.5833	0.3333	1.5417
17	Н	-0.5833	0.1667	1.2917
18	Н	-0.7500	0.1667	1.8750
19	Н	-0.2500	0.1667	1.1250
20	Н	-0.4167	0.1667	1.7083
21	Н	-0.4167	0.3333	1.4583
22	Н	-0.5833	0.3333	2.0417
23	Н	-0.5833	0.1667	1.7917
24	Н	-0.7500	0.1667	2.3750

25	Н	-0.0833	0.0000	0.2917
26	Н	-0.2500	0.0000	0.8750
27	Н	-0.4167	0.0000	0.9583
28	Н	-0.5833	0.0000	1.5417
29	Н	-0.7500	0.0000	1.6250
30	Н	-0.9167	0.0000	2.2083
31	Н	-0.0833	0.0000	0.7917
32	Н	-0.2500	0.0000	1.3750
33	Н	-0.5833	0.0000	2.0417
34	Н	-0.7500	0.0000	2.1250
35	Н	-0.9167	0.0000	2.7083
36	Ν	-0.4167	0.0000	1.4583

Fig. S4. (a) Crystal structure, (b)-(d) dielectric functions of Lu₁₈H₃₅N (LuH_{1.944}N_{0.056}, nitrogen atom at the tetrahedral site).

Fig. S5. (a) Crystal structure, (b)-(d) dielectric functions (at 25 GPa), (e) reflectivity and color of Lu₈H₂₃N (LuH_{2.875}N_{0.125}, nitrogen atom at the tetrahedral site).

Fig. S6. (a) Crystal structure, (b)-(d) dielectric functions, (e) reflectivity and color of Lu₈H₂₁N (LuH_{2.625}N_{0.125}, nitrogen atom at the octahedral site).

Fig. S7. (a) Crystal structure, (b)-(d) dielectric functions, (e) reflectivity and color of Lu₈H₂₁N (LuH_{2.625}N_{0.125}, nitrogen atom at the tetrahedral site).

Fig. S8. (a) Crystal structure, (b)-(d) dielectric functions, (e) reflectivity and color of $Lu_8H_{23}N$ ($LuH_{2.875}N_{0.125}$, nitrogen atom at the octahedral site).

Fig. S9. Calculated real (a) and imaginary (b) parts of the dielectric function of LuH_{1.875}. (c) The dielectric function and (d) reflectivity under different pressures. The inset in (d) shows its color under corresponding pressure.

Fig. S10. Calculated real (a) and imaginary (b) parts of the dielectric function of LuH_{1.750}. (c) The dielectric function and (d) reflectivity under different pressures. The inset in (d) shows its color under corresponding pressure.

Fig. S11. Calculated real (a) and imaginary (b) parts of the dielectric function of LuH_{1.625}. (c) The dielectric function and (d) reflectivity under different pressures. The inset in (d) shows its color under corresponding pressure.

Fig. S12. Calculated real (a) and imaginary (b) parts of the dielectric function of LuH_{2.875}. (c) The dielectric function and (d) reflectivity under different pressures. The inset in (d) shows its color under corresponding pressure.

Fig. S13. Calculated real (a) and imaginary (b) parts of the dielectric function of LuH_{2.750}. (c) The dielectric function and (d) reflectivity under different pressures. The inset in (d) shows its color under corresponding pressure.

Fig. S14. Calculated real (a) and imaginary (b) parts of the dielectric function of LuH_{2.625}. (c) The dielectric function and (d) reflectivity under different pressures. The inset in (d) shows its color under corresponding pressure.

Fig. S15. Harmonic phonon dispersion of (a) LuH₂ and (b) LuH₃ under different pressures. Harmonic and anharmonic phonon dispersion at 300 K of (c) LuH₂ and (d) LuH₃.

References

- [1] Denchfield A, Park H, Hemley R J arXiv:2305.18196 [cond-mat.supr-con]
- [2] Chaput L et al. 2011 Phys. Rev. B 84 094302
- [3] Carreras A, Togo A, Tanaka I 2017 Comput. Phys. Commun. 221 221