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Methods 

Device fabrication 

We fabricated a h-BN-encapsulated Bernal bilayer graphene (BLG) device with alignment between 

the straight edges of the BLG flake and the h-BN flakes by using a standard dry-transfer technique 

(Fig. S1). We first mechanically exfoliated bilayer graphene and h-BN (10-30nm) on 300-nm 

SiO2/Si substrate, and selected the flakes of appropriate thickness and high quality with the 

assistance of optical contrast and atomic force microscopy (AFM). We used a poly (bisphenol A 

carbonate) (PC)/ polydimethylsiloxane (PDMS) stamp to stack a h-BN flake, a BLG flake, and 

another h-BN flake sequentially at 80℃. In the stacking process, the BLG sheet was first aligned 

with both the top and bottom h-BN flakes along the straight edges. The h-BN-encapsulated BLG 

heterostructure was then released from the PC film to a SiO2/Si substrate at 140℃. The devices 

were etched by electron beam lithography and dry etching with a CHF3/O2 in an Inductively 

Coupled Plasma (ICP) system. The metal top gate and the edge contacts were patterned using the 

standard electron beam lithography method and deposited by the standard electron beam 

evaporation of Cr(5nm)/Pd(15nm)/Au(30nm). 

 

Electrical measurement 

All the electrical measurements were performed at room temperature in a nitrogen atmosphere, 
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using a semiconductor parameter analyzer (Keysight B1500A) and a probe station (Cascade Summit 

11000 M). The input voltage pulses were programmed and generated through a high-voltage pulse 

generator unit (Keysight B1525A) or a source meter (Keithley 2636B). All measurements were 

controlled by the instruction implemented with LabVIEW. 

 

Implementation of handwritten digits recognition  

To demonstrate the reliability of our proposed moiré physical neural network in implementing 

homogeneous architecture reservoir computing, we carried out a simulation for the recognition task 

of the MNIST handwritten digit dataset. The MNIST dataset consists of 60000 handwritten digits 

for training and another 10000 handwritten digits for testing. Each digit image in the dataset contains 

28×28 pixels and has been binarized prior to classification. We first transformed the image into a 

196×4 matrix, where each row corresponds to a 4-timeframe sequence. These sequences can be 

categorized into 16 different distributions, and all the 4-timeframe sequences in the matrix are a 

subset of these 16 possible sequences. To extract the spatial features of the 4-bit patterns processed 

by the moiré reservoir, we experimentally measured the read currents under 16 input pulse streams 

and obtained the reservoir states for each sequence. These measured current values were used to 

construct a 196×1 reservoir-processed feature vector for each image, where each element of the 

vector is represented by the read current extracted from the measured data for specific 4-bit input 

sequences. To achieve digit recognition based on the output results of the reservoir, we further used 

a fully connected 196×10 moiré-based network as the readout layer to process the 196×1 feature 

vector. We adopted the sigmoid activation function, which is defined as f(x) = (1 + e-x)-1, and a 

typical cross-entropy loss function in network implementation. The neural network was trained by 

standard error backpropagation and mini-batch gradient descent algorithm with a batch size of 12 

for weight updates. Considering the memory characteristics of the moiré synaptic transistor, a 

differential weight-mapping scheme was employed, where each effective synaptic weight contains 

a pair of moiré synaptic transistors, which is defined as W = G+-G-. The conductance of the moiré 

synaptic transistor was experimentally demonstrated to be continuously tunable within the range of 

260 μS to 330 μS, and the differential conductance adjust range was limited between -70 μS and 70 

μS. In software, the corresponding weights were limited to the range of [-3.5, 3.5]. All the simulation 

algorithms were implemented using MATLAB. 

 

  



Fig. S1. Dry transfer process for h-BN-encapsulated BLG heterostructure with alignment 

between the straight edges of BLG and h-BN. (a) A h-BN flake with long straight edges was 

picked up by using a poly (bisphenol A carbonate) (PC)/ polydimethylsiloxane (PDMS) stamp at 

80℃. (b and c) With the aid of a microscope, the straight edges of BLG and h-BN flakes can be 

precisely aligned. The BLG flake and another h-BN flake were stacked after alignment at 80 ℃. (d) 

The h-BN-encapsulated BLG heterostructure was released from the PC film to a SiO2/Si substrate 

at 140℃. The straight edge of the BLG flake was aligned with those of both the top and bottom h-

BN flakes. 

 

Fig. S2. Dynamic current change of the moiré synaptic transistor in response to various 

external stimuli of negative VG. After removing the negative gate voltage pulse, the device 

current decreases below the initial state, mimicking inhibitory postsynaptic current (IPSC) 

behavior in biological synapses. (a) The IPSC responses to a train of pulse with different pulse 

amplitude from -9 V to -14 V and an identical width of 4 s. (b) The IPSC responses to a train of 

pulse with different pulse width from 0.5 s to 9 s but a fixed amplitude of -12 V. (c) The IPSC 

responses at different pulse number from 1 to 4, where the pulse amplitude, width, and interval are 

fixed at -12 V, 3 s, and 3 s, respectively. As the amplitude, width, and number of applied voltage 

pulses increase, the current change exhibits a gradual increase, indicating a transition from short-

term depression to complete long-term depression. 



 

Fig. S3. Linear current-voltage characteristics of the moiré synaptic transistor with different 

conductance states. Under the precise control of the gate voltage pulse, the conductance of the 

moiré synaptic transistor can be continuously tuned within a specific range. The device demonstrates 

excellent linear I-V characteristics, making it a suitable synaptic unit for the artificial neural network 

hardware, which can be used to physically perform multiplication through Ohm's law: I=G·V. 

 

Fig. S4. Reproducibility of long-term potentiation and depression at a moiré synaptic 

transistor. Top, the device was programmed by a sequence of 40 positive pulses (amplitude: from 

15 to 19 V in increments of 0.1V; width: 4 s) followed by 40 negative pulses (amplitude: from -14 

to -18 V in increments of -0.1V; width: 4 s). Bottom, the conductance incrementally changes 

through this sequence of pulses, exhibiting long-term potentiation and depression characteristics. 

This sequence was repeated five times, and the device demonstrates great repeatability and 

negligible cycle-to-cycle variation. The conductance values were read out at VDS = 0.1 V after each 

pulse. 

  



Fig. S5. Dynamic current change in response to 16 different input pulse streams ranging from 

“0000” to “1111”. The bit “1” is represented by a high amplitude pulse (18 V, 1 s), and the bit “0” 

is represented by a pulse with an amplitude of 0 V (equivalently no pulse). Right, plot of the 

enlargement for the gray dashed box. Due to the short-term memory effect and nonlinearity of the 

device, the current response to 16 different input pulse streams can be clearly distinguishable.   

 

Fig. S6. Three reservoir state sampling modes. The reservoir layer comprises 196 reservoir 

nodes, where the encoded 196 streams of 4-timeframe pulses are input into the corresponding 

reservoir nodes respectively. To record the reservoir states, we categorize the sampling modes into 

three types according to the sampling time for each node: all nodes sampling at t1, all nodes 

sampling at t2, and mixture sampling. In the mixture sampling mode, the sampling time alternates 

between t1 and t2 for each node. 

 


