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QFI FOR QUBIT

The classical Fisher information, originating from the
statistical inference, is a way of measuring the amount
of information that an observable random variable X̂
carries about an unknown parameter θ. Suppose that
{px(θ)}Nx=1 is the probability distribution conditioned on
the fixed value of the parameter θ = θ∗ with measure-
ment outcomes {1 ≤ x ≤ N}. The classical Fisher infor-
mation is defined as

Iθ[{px(θ)}] =
N∑

x=1

(ṗx(θ))
2

px(θ)
, (1)

whose inverse provides the lower bound for the variance
of an unbiased estimation of θ.

In quantum metrology, we want to estimate an un-
known parameter θ that is encoded in a given quantum
state ρ(θ). For that purpose we perform some measure-
ment, most generally a POVM {Mx ≥ 0,

∑
x Mx = I},

on the system yielding a classical statistics px(θ) =
Tr(ρ(θ)Mx) that is dependent of the parameter θ with
the precision of estimation quantified by classical Fisher
information as defined in Eq.(1). By maximizing over
all possible measurements we obtain the quantum fisher
information (QFI) [1]

Fθ[ρ] = max
{Mx}

I[{px(θ)}] =
∑
jk

2| ⟨ϕj | ρ̇(θ) |ϕk⟩ |2

λj + λk
, (2)

with {λj , ϕj} being the eigenvalues and eigenstates of
ρ(θ) and ρ̇(θ) = dρ/dθ.

We note that QFI is non-increasing under any com-
pletely positive map E (e.g., partial trace). Let {Ek} be
the Kraus operators for E , i.e.,

E(ρ) =
∑
k

EkρE
†
k

and then M̃x =
∑

k E
†
kMxEk is still a POVM so we have

qx(θ) = Tr[MxE(ρ)] = Tr[M̃xρ] = p̃x(θ)

and

Fθ[E(ρ)] = Iθ[qx(θ)] = Iθ[p̃x(θ)] ≤ Fθ[ρ]

where the first equality is because we have chosen Mx to
be optimal for estimating θ on state E(ρ) and the last

inequality is because the measurement M̃x might not be
optimal for estimating θ on ρ.

In the case of a qubit state ρ with a Bloch vector r⃗ =
Tr(σ⃗ρ) with its dependence of θ given by ρ̇ = ∂ρ/∂θ =

(∂r⃗/∂θ) · σ⃗/2 = ˙⃗r · σ⃗/2, the QFI reads

Fθ[ρ] = | ˙⃗r|2 + ( ˙⃗r · r⃗)2

1− r⃗2
=

| ˙⃗r|2 − ( ˙⃗r × r⃗)2

1− r⃗2
, (3)

which is attained by an ideal projective measurement
along the direction (in the Bloch sphere representation)

m⃗ ∝ ˙⃗r +
( ˙⃗r · r⃗)
1− r⃗2

r⃗ ∝ ˙⃗r − ( ˙⃗r × r⃗)× r⃗. (4)

DERIVATION OF MAIN RESULTS EQS. (5&6) IN
THE MAIN TEXT

We express the initial state of a two-level system in the
Bloch representation as

ρ =
Î + x(σx cosΦ + σy sinΦ) + zσz

2
. (5)

After its interaction with the detector plus environment
P0 = e0, the state of the total system reads

ρf = U(ρ⊗ P0)U
† =

1∑
a,b=0

ρab |a⟩ ⟨b| ⊗ |ea⟩ ⟨eb|, (6)

with ρab = ⟨a| ρ |b⟩, and a, b = 0, 1. We then have

ρS = TrDEρf =

1∑
a,b=0

ρab⟨ea|eb⟩ |a⟩ ⟨b| =
1 + r⃗ · σ⃗

2
, (7)

with r⃗ = (κx cos(Φ + δ), κx sin(Φ + δ), z), and κ =
|⟨e0|e1⟩|, ⟨e0|e1⟩ = κeiδ. We then obtain QFI

FΦ[ρS ] = κ2x2 = |⟨e0|e1⟩|2x2 (8)

from the optimal measurement M̂Φ = m⃗Φ · σ⃗ on the sys-
tem state with m⃗Φ ∝ (− sinΦ, cosΦ, 0).

The optimal estimation of z, on the other hand, is
achieved by a suitable measurement on the detector,
which might be a high dimensional quantum system for
which the QFI does not admit a compact analytical ex-
pression. However due to the non-increasing property of
QFI under partial trace, we have

Fz[ρD] ≤ Fz[ρDE ], (9)



2

so that we have only to calculate the QFI of estimating
parameter z on the state of detector plus environment

ρDE = TrSρf =

1∑
a,b=0

ρab |ea⟩ ⟨ea| . (10)

The state ρDE is of rank two and its QFI can be calcu-
lated analytically. In fact it can be regarded effectively
as a state of a two-level system spanned by {|e0⟩ , |e1⟩}.
Denoting by Σ⃗ as Pauli matrices of this effective qubit,
we have Bloch vectors s⃗a = ⟨ea|Σ⃗|ea⟩ and

ρDE =
1 + R⃗ · Σ⃗

2
, R⃗ =

s⃗0 + s⃗1 + z(s⃗0 − s⃗1)

2
, (11)

with

∂R⃗

∂z
=

s⃗0 − s⃗1
2

.

According to Eq.(3), we obtain the upper bound

Fz[ρDE ] =
1− s⃗0 · s⃗1
2(1− z2)

=
1− |⟨e0|e1⟩|2

1− z2
, (12)

Putting everything together, Eqs.(9,8), P 2 = z2, and
V 2 = x2, we have

(1−P 2)Fz[ρD]+
FΦ[ρS ]

V 2
≤ (1−z2)Fz[ρDE ]+

FΦ[ρS ]

x2
≤ 1

Moreover since Fφ[ρS ] ≥ 0 and x2 ≤ 1− z2, we have

Fz[ρD]Fφ[ρS ] ≤ Fz[ρDE ]Fφ[ρS ]

≤ (1− |⟨e0|e1⟩|2)|⟨e0|e1⟩|2 ≤ 1

4
.

We have Fz[ρD]Fφ[ρS ] =
1
4 iff |⟨e0|e1⟩|2 = 1/2.

DERIVATION OF EQ.(9) IN THE MAIN TEXT

After the interaction, the detector will be brought to
the following final state

ρD =

1∑
a=0

paϱa = ϱ+ + zϱ− (13)

with pa = 1±z
2 and 2ϱ± = ϱ0 ± ϱ1. For convenience

we denote by P± the projector to the non-negative or
negative, respectively, eigenspace of p0ϱ0 − p1ϱ1. The
distinguishability now becomes

D = Tr[(P+ − P−)(zϱ+ + ϱ−)] = δ− + zδ+ (14)

with δ± = Tr(P+−P−)ϱ±. Since the quantum Fisher in-
formation is the largest Fisher information over all possi-
ble measurements, by performing a special two-outcome
measurement {P+, P−}, we have

Fz[ρD] ≥
∑
±

(TrP±ρ̇D)2

TrP±ρD
=

δ2−
1− (δ+ + zδ−)2

leading to, using Eq.(14),

(1− z2)2Fz[ρD] + z2 −D2

≥
(1− z2)2δ2− + (z −D2)[1− (δ+ + zδ−)

2]

1− (δ+ + zδ−)2

=
[(1 + z2)δ+δ− − z(1− δ2+ − δ2−)]

2

1− (δ+ + zδ−)2
≥ 0.
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