Supplementary Materials for "Wave-Particle Duality via Quantum Fisher Information"

Chang Niu¹ and Sixia Yu^{1,*}

¹Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China

QFI FOR QUBIT

The classical Fisher information, originating from the statistical inference, is a way of measuring the amount of information that an observable random variable \hat{X} carries about an unknown parameter θ . Suppose that $\{p_x(\theta)\}_{x=1}^N$ is the probability distribution conditioned on the fixed value of the parameter $\theta = \theta^*$ with measurement outcomes $\{1 \le x \le N\}$. The classical Fisher information is defined as

$$I_{\theta}[\{p_x(\theta)\}] = \sum_{x=1}^{N} \frac{(\dot{p}_x(\theta))^2}{p_x(\theta)},\tag{1}$$

whose inverse provides the lower bound for the variance of an unbiased estimation of θ .

In quantum metrology, we want to estimate an unknown parameter θ that is encoded in a given quantum state $\rho(\theta)$. For that purpose we perform some measurement, most generally a POVM $\{M_x \ge 0, \sum_x M_x = I\}$, on the system yielding a classical statistics $p_x(\theta) =$ $\text{Tr}(\rho(\theta)M_x)$ that is dependent of the parameter θ with the precision of estimation quantified by classical Fisher information as defined in Eq.(1). By maximizing over all possible measurements we obtain the quantum fisher information (QFI) [1]

$$F_{\theta}[\rho] = \max_{\{M_x\}} I[\{p_x(\theta)\}] = \sum_{jk} \frac{2|\langle \phi_j | \dot{\rho}(\theta) | \phi_k \rangle|^2}{\lambda_j + \lambda_k}, \quad (2)$$

with $\{\lambda_j, \phi_j\}$ being the eigenvalues and eigenstates of $\rho(\theta)$ and $\dot{\rho}(\theta) = d\rho/d\theta$.

We note that QFI is non-increasing under any completely positive map \mathcal{E} (e.g., partial trace). Let $\{E_k\}$ be the Kraus operators for \mathcal{E} , i.e.,

$$\mathcal{E}(\rho) = \sum_{k} E_k \rho E_k^{\dagger}$$

and then $\tilde{M}_x = \sum_k E_k^{\dagger} M_x E_k$ is still a POVM so we have

$$q_x(\theta) = \operatorname{Tr}[M_x \mathcal{E}(\rho)] = \operatorname{Tr}[\tilde{M}_x \rho] = \tilde{p}_x(\theta)$$

and

$$F_{\theta}[\mathcal{E}(\rho)] = I_{\theta}[q_x(\theta)] = I_{\theta}[\tilde{p}_x(\theta)] \le F_{\theta}[\rho]$$

where the first equality is because we have chosen M_x to be optimal for estimating θ on state $\mathcal{E}(\rho)$ and the last inequality is because the measurement \tilde{M}_x might not be optimal for estimating θ on ρ .

In the case of a qubit state ρ with a Bloch vector $\vec{r} = \text{Tr}(\vec{\sigma}\rho)$ with its dependence of θ given by $\dot{\rho} = \partial \rho / \partial \theta = (\partial \vec{r} / \partial \theta) \cdot \vec{\sigma} / 2 = \dot{\vec{r}} \cdot \vec{\sigma} / 2$, the QFI reads

$$F_{\theta}[\rho] = |\dot{\vec{r}}|^2 + \frac{(\dot{\vec{r}} \cdot \vec{r})^2}{1 - \vec{r^2}} = \frac{|\dot{\vec{r}}|^2 - (\dot{\vec{r}} \times \vec{r})^2}{1 - \vec{r^2}},$$
(3)

which is attained by an ideal projective measurement along the direction (in the Bloch sphere representation)

$$\vec{m} \propto \dot{\vec{r}} + \frac{(\vec{r} \cdot \vec{r})}{1 - \vec{r^2}} \vec{r} \propto \dot{\vec{r}} - (\dot{\vec{r}} \times \vec{r}) \times \vec{r}.$$
 (4)

DERIVATION OF MAIN RESULTS EQS. (5&6) IN THE MAIN TEXT

We express the initial state of a two-level system in the Bloch representation as

$$\rho = \frac{\hat{I} + x(\sigma_x \cos \Phi + \sigma_y \sin \Phi) + z\sigma_z}{2}.$$
 (5)

After its interaction with the detector plus environment $P_0 = e_0$, the state of the total system reads

$$\rho_f = U(\rho \otimes P_0)U^{\dagger} = \sum_{a,b=0}^{1} \rho_{ab} \left| a \right\rangle \left\langle b \right| \otimes \left| e_a \right\rangle \left\langle e_b \right|, \quad (6)$$

with $\rho_{ab} = \langle a | \rho | b \rangle$, and a, b = 0, 1. We then have

$$\rho_S = \operatorname{Tr}_{DE} \rho_f = \sum_{a,b=0}^{1} \rho_{ab} \langle e_a | e_b \rangle \left| a \right\rangle \langle b \right| = \frac{1 + \vec{r} \cdot \vec{\sigma}}{2}, \quad (7)$$

with $\vec{r} = (\kappa x \cos(\Phi + \delta), \kappa x \sin(\Phi + \delta), z)$, and $\kappa = |\langle e_0 | e_1 \rangle|, \langle e_0 | e_1 \rangle = \kappa e^{i\delta}$. We then obtain QFI

$$F_{\Phi}[\rho_S] = \kappa^2 x^2 = |\langle e_0 | e_1 \rangle|^2 x^2$$
(8)

from the optimal measurement $\hat{M}_{\Phi} = \vec{m}_{\Phi} \cdot \vec{\sigma}$ on the system state with $\vec{m}_{\Phi} \propto (-\sin \Phi, \cos \Phi, 0)$.

The optimal estimation of z, on the other hand, is achieved by a suitable measurement on the detector, which might be a high dimensional quantum system for which the QFI does not admit a compact analytical expression. However due to the non-increasing property of QFI under partial trace, we have

$$F_z[\rho_D] \le F_z[\rho_{DE}],\tag{9}$$

so that we have only to calculate the QFI of estimating parameter z on the state of detector plus environment

$$\rho_{DE} = \operatorname{Tr}_{S} \rho_{f} = \sum_{a,b=0}^{1} \rho_{ab} \left| e_{a} \right\rangle \left\langle e_{a} \right|.$$
 (10)

The state ρ_{DE} is of rank two and its QFI can be calculated analytically. In fact it can be regarded effectively as a state of a two-level system spanned by $\{|e_0\rangle, |e_1\rangle\}$. Denoting by $\vec{\Sigma}$ as Pauli matrices of this effective qubit, we have Bloch vectors $\vec{s_a} = \langle e_a | \vec{\Sigma} | e_a \rangle$ and

$$\rho_{DE} = \frac{1 + \vec{R} \cdot \vec{\Sigma}}{2}, \quad \vec{R} = \frac{\vec{s_0} + \vec{s_1} + z(\vec{s_0} - \vec{s_1})}{2}, \quad (11)$$

with

$$\frac{\partial \vec{R}}{\partial z} = \frac{\vec{s_0} - \vec{s_1}}{2}.$$

According to Eq.(3), we obtain the upper bound

$$F_{z}[\rho_{DE}] = \frac{1 - \vec{s_{0}} \cdot \vec{s_{1}}}{2(1 - z^{2})} = \frac{1 - |\langle e_{0}|e_{1}\rangle|^{2}}{1 - z^{2}}, \qquad (12)$$

Putting everything together, Eqs.(9,8), $P^2 = z^2$, and $V^2 = x^2$, we have

$$(1-P^2)F_z[\rho_D] + \frac{F_{\Phi}[\rho_S]}{V^2} \le (1-z^2)F_z[\rho_{DE}] + \frac{F_{\Phi}[\rho_S]}{x^2} \le 1$$

Moreover since $F_{\varphi}[\rho_S] \ge 0$ and $x^2 \le 1 - z^2$, we have

$$F_{z}[\rho_{D}]F_{\varphi}[\rho_{S}] \leq F_{z}[\rho_{DE}]F_{\varphi}[\rho_{S}]$$
$$\leq (1 - |\langle e_{0}|e_{1}\rangle|^{2})|\langle e_{0}|e_{1}\rangle|^{2} \leq \frac{1}{4}.$$

We have $F_z[\rho_D]F_{\varphi}[\rho_S] = \frac{1}{4}$ iff $|\langle e_0|e_1\rangle|^2 = 1/2$.

DERIVATION OF EQ.(9) IN THE MAIN TEXT

After the interaction, the detector will be brought to the following final state

$$\rho_D = \sum_{a=0}^{1} p_a \varrho_a = \varrho_+ + z \varrho_- \tag{13}$$

with $p_a = \frac{1\pm z}{2}$ and $2\varrho_{\pm} = \varrho_0 \pm \varrho_1$. For convenience we denote by P_{\pm} the projector to the non-negative or negative, respectively, eigenspace of $p_0\varrho_0 - p_1\varrho_1$. The distinguishability now becomes

$$\mathcal{D} = \text{Tr}[(P_{+} - P_{-})(z\varrho_{+} + \varrho_{-})] = \delta_{-} + z\delta_{+} \qquad (14)$$

with $\delta_{\pm} = \text{Tr}(P_+ - P_-)\varrho_{\pm}$. Since the quantum Fisher information is the largest Fisher information over all possible measurements, by performing a special two-outcome measurement $\{P_+, P_-\}$, we have

$$F_{z}[\rho_{D}] \ge \sum_{\pm} \frac{(\text{Tr}P_{\pm}\dot{\rho}_{D})^{2}}{\text{Tr}P_{\pm}\rho_{D}} = \frac{\delta_{-}^{2}}{1 - (\delta_{+} + z\delta_{-})^{2}}$$

leading to, using Eq.(14),

$$\begin{split} & (1-z^2)^2 F_z[\rho_D] + z^2 - \mathcal{D}^2 \\ \geq \frac{(1-z^2)^2 \delta_-^2 + (z-\mathcal{D}^2)[1-(\delta_++z\delta_-)^2]}{1-(\delta_++z\delta_-)^2} \\ & = \frac{[(1+z^2)\delta_+\delta_- - z(1-\delta_+^2-\delta_-^2)]^2}{1-(\delta_++z\delta_-)^2} \geq 0. \end{split}$$

* yusixia@ustc.edu.cn

 S. L. Braunstein and C.M. Caves 1994 Phys. Rev. Lett. 72, 3439